aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemmlowp.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/gemmlowp.cl')
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl1527
1 files changed, 1211 insertions, 316 deletions
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index 80b5d00cf2..35e0d9dba5 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -26,9 +26,9 @@
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val = arm_dot_acc((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3), val);
+#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), (val));
#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val += arm_dot((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3));
+#define ARM_DOT(x, y, val) val += arm_dot((x), (y));
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
@@ -600,29 +600,22 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
- const int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
- const int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- const int z = get_global_id(2);
-
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global uchar *src_addr_a = (__global uchar *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
- __global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
+ __global uchar *src_addr_a = (__global uchar *)(src0_ptr + (get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT) * src0_stride_y + get_global_id(2) * src0_stride_z + src0_offset_first_element_in_bytes);
+ __global uchar *src_addr_b = (__global uchar *)(src1_ptr + (get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP) * src1_stride_y + src1_offset_first_element_in_bytes);
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr_b += (z % MATRIX_B_DEPTH) * src1_stride_z;
+ src_addr_b += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
- src_addr_b += z * src1_stride_z;
+ src_addr_b += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
- // Compute end row address for matrix B
- __global uchar *src_end_addr_b = src_addr_b + COLS_B;
-
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
@@ -631,21 +624,27 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
uint c01 = 0;
uint c02 = 0;
uint c03 = 0;
+
uint c10 = 0;
uint c11 = 0;
uint c12 = 0;
uint c13 = 0;
+
uint c20 = 0;
uint c21 = 0;
uint c22 = 0;
uint c23 = 0;
+
uint c30 = 0;
uint c31 = 0;
uint c32 = 0;
uint c33 = 0;
+#define COLS_MTX_B (COLS_B / (16 * MULT_TRANSPOSE1XW_WIDTH))
+
#if MULT_INTERLEAVE4X4_HEIGHT == 1
- for(; src_addr_b <= (src_end_addr_b - (int)(32 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += (32 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (32 * TRANSPOSE1XW_WIDTH_STEP))
+ int i = 0;
+ for(; i <= (int)(COLS_MTX_B - 8); i += 8)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
uchar16 a0 = vload16(0, src_addr_a);
@@ -653,83 +652,88 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
uchar4 b1 = vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP);
uchar4 b2 = vload4(0, src_addr_b + 8 * TRANSPOSE1XW_WIDTH_STEP);
uchar4 b3 = vload4(0, src_addr_b + 12 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b4 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b5 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b6 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b7 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
// Accumulate
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s0, b1.s0, b2.s0, b3.s0, c00);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s1, b1.s1, b2.s1, b3.s1, c01);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s2, b1.s2, b2.s2, b3.s2, c02);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s3, b1.s3, b2.s3, b3.s3, c03);
-
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s0, b1.s0, b2.s0, b3.s0, c10);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s1, b1.s1, b2.s1, b3.s1, c11);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s2, b1.s2, b2.s2, b3.s2, c12);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s3, b1.s3, b2.s3, b3.s3, c13);
-
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s0, b1.s0, b2.s0, b3.s0, c20);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s1, b1.s1, b2.s1, b3.s1, c21);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s2, b1.s2, b2.s2, b3.s2, c22);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s3, b1.s3, b2.s3, b3.s3, c23);
-
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s0, b1.s0, b2.s0, b3.s0, c30);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s1, b1.s1, b2.s1, b3.s1, c31);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s2, b1.s2, b2.s2, b3.s2, c32);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s3, b1.s3, b2.s3, b3.s3, c33);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload16(0, src_addr_a + 16);
- b0 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
- b1 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
- b2 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
- b3 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c00);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c01);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c02);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c03);
+
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c10);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c11);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c12);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c13);
+
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c20);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c21);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c22);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c23);
+
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c30);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c31);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c32);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c33);
// Accumulate
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s0, b1.s0, b2.s0, b3.s0, c00);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s1, b1.s1, b2.s1, b3.s1, c01);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s2, b1.s2, b2.s2, b3.s2, c02);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s3, b1.s3, b2.s3, b3.s3, c03);
-
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s0, b1.s0, b2.s0, b3.s0, c10);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s1, b1.s1, b2.s1, b3.s1, c11);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s2, b1.s2, b2.s2, b3.s2, c12);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s3, b1.s3, b2.s3, b3.s3, c13);
-
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s0, b1.s0, b2.s0, b3.s0, c20);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s1, b1.s1, b2.s1, b3.s1, c21);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s2, b1.s2, b2.s2, b3.s2, c22);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s3, b1.s3, b2.s3, b3.s3, c23);
-
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s0, b1.s0, b2.s0, b3.s0, c30);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s1, b1.s1, b2.s1, b3.s1, c31);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s2, b1.s2, b2.s2, b3.s2, c32);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s3, b1.s3, b2.s3, b3.s3, c33);
- }
-#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
+ a0 = vload16(0, src_addr_a + 16);
- for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- uchar4 a0 = vload4(0, src_addr_a);
- uchar4 b0 = vload4(0, src_addr_b);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c00);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c01);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c02);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c03);
- c00 += (ushort)a0.s0 * b0.s0;
- c01 += (ushort)a0.s0 * b0.s1;
- c02 += (ushort)a0.s0 * b0.s2;
- c03 += (ushort)a0.s0 * b0.s3;
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c10);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c11);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c12);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c13);
- c10 += (ushort)a0.s1 * b0.s0;
- c11 += (ushort)a0.s1 * b0.s1;
- c12 += (ushort)a0.s1 * b0.s2;
- c13 += (ushort)a0.s1 * b0.s3;
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c20);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c21);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c22);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c23);
- c20 += (ushort)a0.s2 * b0.s0;
- c21 += (ushort)a0.s2 * b0.s1;
- c22 += (ushort)a0.s2 * b0.s2;
- c23 += (ushort)a0.s2 * b0.s3;
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c30);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c31);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c32);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c33);
- c30 += (ushort)a0.s3 * b0.s0;
- c31 += (ushort)a0.s3 * b0.s1;
- c32 += (ushort)a0.s3 * b0.s2;
- c33 += (ushort)a0.s3 * b0.s3;
+ src_addr_a += 32;
+ src_addr_b += 32 * TRANSPOSE1XW_WIDTH_STEP;
+ }
+#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
+ int i_left_over = 0;
+ for(; i < (int)(COLS_MTX_B); ++i)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ uchar16 a0 = vload16(0, src_addr_a + (i_left_over % 4) + ((i_left_over / 4) * 16));
+ uchar4 b0 = vload4(0, src_addr_b);
+
+ c00 += a0.s0 * b0.s0;
+ c01 += a0.s0 * b0.s1;
+ c02 += a0.s0 * b0.s2;
+ c03 += a0.s0 * b0.s3;
+
+ c10 += a0.s4 * b0.s0;
+ c11 += a0.s4 * b0.s1;
+ c12 += a0.s4 * b0.s2;
+ c13 += a0.s4 * b0.s3;
+
+ c20 += a0.s8 * b0.s0;
+ c21 += a0.s8 * b0.s1;
+ c22 += a0.s8 * b0.s2;
+ c23 += a0.s8 * b0.s3;
+
+ c30 += a0.sC * b0.s0;
+ c31 += a0.sC * b0.s1;
+ c32 += a0.sC * b0.s2;
+ c33 += a0.sC * b0.s3;
+
+ i_left_over++;
+ src_addr_b += 4 * TRANSPOSE1XW_WIDTH_STEP;
}
// Compute destination address
@@ -760,7 +764,7 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
- dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
+ dst.ptr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
@@ -770,7 +774,7 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
- dst.ptr += z * dst_stride_z;
+ dst.ptr += get_global_id(2) * dst_stride_z;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
@@ -1605,6 +1609,8 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
// Add offset due to the cross plane paddings
zin *= (src_cross_plane_pad * src0_stride_y);
+ zin += ((uint4)(0, 1, 2, 3)) * src0_stride_y;
+
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src0_stride_z by DEPTH_GEMM3D
src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
@@ -1623,199 +1629,635 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
src_addr.s1 += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
- int end_row_vec_a = src_addr.s0 + COLS_A;
-
uint acc00 = 0;
uint acc01 = 0;
uint acc02 = 0;
uint acc03 = 0;
+ uint acc04 = 0;
+ uint acc05 = 0;
+ uint acc06 = 0;
+ uint acc07 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uint acc10 = 0;
uint acc11 = 0;
uint acc12 = 0;
uint acc13 = 0;
+ uint acc14 = 0;
+ uint acc15 = 0;
+ uint acc16 = 0;
+ uint acc17 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uint acc20 = 0;
uint acc21 = 0;
uint acc22 = 0;
uint acc23 = 0;
+ uint acc24 = 0;
+ uint acc25 = 0;
+ uint acc26 = 0;
+ uint acc27 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uint acc30 = 0;
uint acc31 = 0;
uint acc32 = 0;
uint acc33 = 0;
+ uint acc34 = 0;
+ uint acc35 = 0;
+ uint acc36 = 0;
+ uint acc37 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uint acc40 = 0;
- uint acc41 = 0;
- uint acc42 = 0;
- uint acc43 = 0;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- for(; src_addr.s0 <= (end_row_vec_a - 4); src_addr += (int2)(4, 4 * src1_stride_y))
+ // A and B src indices get incremented at the same time.
+ int i = 0;
+ for(; i <= ((int)COLS_A - 8); i += 8)
{
- // Load values from matrix A
- uchar4 a0 = vload4(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- uchar4 a1 = vload4(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- uchar4 a2 = vload4(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uchar4 a3 = vload4(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uchar4 a4 = vload4(0, src0_ptr + src_addr.s0 + 4 * src0_stride_y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- // Load values from matrix B
- uchar4 b0 = vload4(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
- uchar4 b1 = vload4(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
- uchar4 b2 = vload4(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
- uchar4 b3 = vload4(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ uchar8 b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ uchar8 b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ uchar8 b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a0.s0, a0.s1, a0.s2, a0.s3, acc00);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a0.s0, a0.s1, a0.s2, a0.s3, acc01);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a0.s0, a0.s1, a0.s2, a0.s3, acc02);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a0.s0, a0.s1, a0.s2, a0.s3, acc03);
- }
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a1.s0, a1.s1, a1.s2, a1.s3, acc10);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a1.s0, a1.s1, a1.s2, a1.s3, acc11);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a1.s0, a1.s1, a1.s2, a1.s3, acc12);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a1.s0, a1.s1, a1.s2, a1.s3, acc13);
- }
+ ARM_DOT(a1.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a2.s0, a2.s1, a2.s2, a2.s3, acc20);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a2.s0, a2.s1, a2.s2, a2.s3, acc21);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a2.s0, a2.s1, a2.s2, a2.s3, acc22);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a2.s0, a2.s1, a2.s2, a2.s3, acc23);
- }
+ ARM_DOT(a2.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a3.s0, a3.s1, a3.s2, a3.s3, acc30);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a3.s0, a3.s1, a3.s2, a3.s3, acc31);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a3.s0, a3.s1, a3.s2, a3.s3, acc32);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a3.s0, a3.s1, a3.s2, a3.s3, acc33);
- }
+ ARM_DOT(a3.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a4.s0, a4.s1, a4.s2, a4.s3, acc40);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a4.s0, a4.s1, a4.s2, a4.s3, acc41);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a4.s0, a4.s1, a4.s2, a4.s3, acc42);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a4.s0, a4.s1, a4.s2, a4.s3, acc43);
- }
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
+
+ b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT(a1.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT(a2.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT(a3.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 8;
}
- for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
+ for(; i < (int)COLS_A; ++i)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
- uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uchar a4 = *(src0_ptr + src_addr.s0 + 4 * src0_stride_y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
- uchar4 b0 = vload4(0, src1_ptr + src_addr.s1);
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1);
+ src_addr.s1 += src1_stride_y;
+
+ acc00 += (uint)a0 * b0.s0;
+ acc01 += (uint)a0 * b0.s1;
+ acc02 += (uint)a0 * b0.s2;
+ acc03 += (uint)a0 * b0.s3;
+ acc04 += (uint)a0 * b0.s4;
+ acc05 += (uint)a0 * b0.s5;
+ acc06 += (uint)a0 * b0.s6;
+ acc07 += (uint)a0 * b0.s7;
- // Accumulate
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a0;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a0;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a0;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc10 += (uint)a1 * b0.s0;
+ acc11 += (uint)a1 * b0.s1;
+ acc12 += (uint)a1 * b0.s2;
+ acc13 += (uint)a1 * b0.s3;
+ acc14 += (uint)a1 * b0.s4;
+ acc15 += (uint)a1 * b0.s5;
+ acc16 += (uint)a1 * b0.s6;
+ acc17 += (uint)a1 * b0.s7;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc20 += (uint)a2 * b0.s0;
+ acc21 += (uint)a2 * b0.s1;
+ acc22 += (uint)a2 * b0.s2;
+ acc23 += (uint)a2 * b0.s3;
+ acc24 += (uint)a2 * b0.s4;
+ acc25 += (uint)a2 * b0.s5;
+ acc26 += (uint)a2 * b0.s6;
+ acc27 += (uint)a2 * b0.s7;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc30 += (uint)a3 * b0.s0;
+ acc31 += (uint)a3 * b0.s1;
+ acc32 += (uint)a3 * b0.s2;
+ acc33 += (uint)a3 * b0.s3;
+ acc34 += (uint)a3 * b0.s4;
+ acc35 += (uint)a3 * b0.s5;
+ acc36 += (uint)a3 * b0.s6;
+ acc37 += (uint)a3 * b0.s7;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc00 += ((uint)tmp0);
- acc01 += ((uint)tmp1);
- acc02 += ((uint)tmp2);
- acc03 += ((uint)tmp3);
- }
+ src_addr.s0 += 1;
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = dst.ptr;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+ // Store the result
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a1;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a1;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a1;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a1;
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc10 += ((uint)tmp0);
- acc11 += ((uint)tmp1);
- acc12 += ((uint)tmp2);
- acc13 += ((uint)tmp3);
- }
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+ // Store the result
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a2;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a2;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a2;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a2;
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+}
- acc20 += ((uint)tmp0);
- acc21 += ((uint)tmp1);
- acc22 += ((uint)tmp2);
- acc23 += ((uint)tmp3);
- }
+__kernel void gemmlowp_mm_bifrost_transposed_dot8(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D)
+ )
+{
+ int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx;
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ zin += ((uint4)(0, 1, 2, 3)) * src0_stride_y;
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ uint acc00 = 0;
+ uint acc01 = 0;
+ uint acc02 = 0;
+ uint acc03 = 0;
+ uint acc04 = 0;
+ uint acc05 = 0;
+ uint acc06 = 0;
+ uint acc07 = 0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uint acc10 = 0;
+ uint acc11 = 0;
+ uint acc12 = 0;
+ uint acc13 = 0;
+ uint acc14 = 0;
+ uint acc15 = 0;
+ uint acc16 = 0;
+ uint acc17 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uint acc20 = 0;
+ uint acc21 = 0;
+ uint acc22 = 0;
+ uint acc23 = 0;
+ uint acc24 = 0;
+ uint acc25 = 0;
+ uint acc26 = 0;
+ uint acc27 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a3;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a3;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a3;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a3;
+ uint acc30 = 0;
+ uint acc31 = 0;
+ uint acc32 = 0;
+ uint acc33 = 0;
+ uint acc34 = 0;
+ uint acc35 = 0;
+ uint acc36 = 0;
+ uint acc37 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc30 += ((uint)tmp0);
- acc31 += ((uint)tmp1);
- acc32 += ((uint)tmp2);
- acc33 += ((uint)tmp3);
- }
+ // A and B src indices get incremented at the same time.
+ int i = 0;
+ for(; i <= ((int)COLS_A - 8); i += 8)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a4;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a4;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a4;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a4;
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc40 += ((uint)tmp0);
- acc41 += ((uint)tmp1);
- acc42 += ((uint)tmp2);
- acc43 += ((uint)tmp3);
- }
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ uchar8 b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ uchar8 b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ uchar8 b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT(a1.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT(a2.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT(a3.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT(a1.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT(a2.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT(a3.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 8;
}
- const int z = get_global_id(2);
+ for(; i < (int)COLS_A; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1);
+ src_addr.s1 += src1_stride_y;
+
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s0), acc00);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s1), acc01);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s2), acc02);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s3), acc03);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s4), acc04);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s5), acc05);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s6), acc06);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s0), acc10);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s1), acc11);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s2), acc12);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s3), acc13);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s4), acc14);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s5), acc15);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s6), acc16);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s0), acc20);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s1), acc21);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s2), acc22);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s3), acc23);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s4), acc24);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s5), acc25);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s6), acc26);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s0), acc30);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s1), acc31);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s2), acc32);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s3), acc33);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s4), acc34);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s5), acc35);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s6), acc36);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 1;
+ }
+
+ int z = get_global_id(2);
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ // Compute dst address
+ __global uchar *dst_addr = dst.ptr;
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
@@ -1833,7 +2275,7 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint8 zout = ((uint8)(0, 1, 2, 3, 4, 5, 6, 7) + (uint8)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint8)HEIGHT_GEMM3D;
+ uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
@@ -1841,41 +2283,43 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
- dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
// Store the result
- vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y + zout.s4));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
- dst.ptr += z * dst_stride_z;
+ dst_addr += z * dst_stride_z;
// Store the result
- vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
@@ -1937,6 +2381,70 @@ __kernel void gemmlowp_matrix_a_reduction(TENSOR3D_DECLARATION(src),
*((__global int *)dst.ptr) = (int)sum_row;
}
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A using the arm dot product instruction
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_a_reduction_dot8(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ uint sum_row = 0;
+
+ __global const uchar *matrix_a = (__global const uchar *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
+
+ int i = 0;
+
+ // This for loop performs 16 accumulations
+ for(; i <= ((int)COLS_A - 32); i += 32)
+ {
+ uchar16 a0_u8 = vload16(0, matrix_a + i);
+
+ sum_row += arm_dot(a0_u8.s0123, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s4567, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s89AB, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.sCDEF, (uchar4)(1));
+
+ a0_u8 = vload16(1, matrix_a + i);
+
+ sum_row += arm_dot(a0_u8.s0123, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s4567, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s89AB, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.sCDEF, (uchar4)(1));
+ }
+
+ // This for loop performs the leftover accumulations
+ for(; i < COLS_A; ++i)
+ {
+ sum_row += matrix_a[i];
+ }
+
+ *((__global int *)dst.ptr) = (int)sum_row;
+}
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#endif // defined(COLS_A)
#if defined(COLS_B) && defined(ROWS_B)
@@ -2002,6 +2510,101 @@ __kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
#endif // defined(COLS_B) && defined(ROWS_B)
#if defined(K_OFFSET)
+
+/* Helper function used to calculate the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
+ * and calculates the offset contribution of matrix A and matrix B.
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * @param[in] x get_global_id(0) * 4
+ * @param[in] y get_global_id(1)
+ * @param[in] z get_global_id(2)
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ */
+inline int4 offset_contribution(
+ int x,
+ int y,
+ int z
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS)
+)
+{
+ int4 a_offset_s32 = (int4)0;
+ int4 b_offset_s32 = (int4)0;
+
+ int batch_id = z;
+#if defined(DEPTH_INPUT3D)
+ batch_id /= (int)DEPTH_INPUT3D;
+#endif // defined(DEPTH_INPUT3D)
+
+#if defined(A_OFFSET)
+ // Compute the offset contribution due to A_OFFSET
+ __global uchar *sum_col_addr = sum_col_ptr + sum_col_offset_first_element_in_bytes + x * sizeof(int);
+
+ // Compute the offset contribution due to A_OFFSET
+#if defined(SUM_COL_HAS_BATCHES)
+ a_offset_s32 = vload4(0, (__global int *)(sum_col_addr + batch_id * sum_col_stride_y));
+#else // defined(SUM_COL_HAS_BATCHES)
+ a_offset_s32 = vload4(0, (__global int *)sum_col_addr);
+#endif // defined(SUM_COL_HAS_BATCHES)
+
+ a_offset_s32 *= (int4)A_OFFSET;
+#endif // defined(A_OFFSET)
+
+#if defined(B_OFFSET)
+ // Compute the offset contribution due to A_OFFSET
+ __global uchar *sum_row_addr = sum_row_ptr + sum_row_offset_first_element_in_bytes + y * sizeof(int);
+
+ // Compute the offset contribution due to B_OFFSET
+#if defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 = (int4) * (((__global int *)(sum_row_addr + batch_id * sum_row_stride_y)) + (z % (int)DEPTH_INPUT3D) * (int)HEIGHT_INPUT3D);
+#else // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 = (int4) * (((__global int *)(sum_row_addr + batch_id * sum_row_stride_y)));
+#endif // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 *= (int4)B_OFFSET;
+#endif // defined(B_OFFSET)
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ int4 biases_values = vload4(0, (__global int *)bias_addr);
+ b_offset_s32 += (int4)biases_values;
+#endif // defined(ADD_BIAS)
+
+ return (int4)K_OFFSET + a_offset_s32 + b_offset_s32;
+}
+
/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel. The computation is performed in-place
*
* This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
@@ -2027,18 +2630,22 @@ __kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
* @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] sum_col_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
- * @param[in] sum_col_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] sum_col_step_x sum_col_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] sum_col_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] sum_col_step_y sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] sum_col_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] sum_row_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
- * @param[in] sum_row_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] sum_row_step_x sum_row_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] sum_row_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] sum_row_step_y sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] sum_row_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
*/
__kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
#if defined(A_OFFSET)
@@ -2049,56 +2656,348 @@ __kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
,
IMAGE_DECLARATION(sum_row)
#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS))
)
{
- Tensor3D mm_result = CONVERT_TO_TENSOR3D_STRUCT(mm_result);
-
+ const int x = get_global_id(0) * 4;
const int y = get_global_id(1);
const int z = get_global_id(2);
- int4 a_offset_s32 = (int4)0;
- int4 b_offset_s32 = (int4)0;
+ // Compute offset contribution
+ int4 offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
- int batch_id = z;
-#if defined(DEPTH_INPUT3D)
- batch_id /= (int)DEPTH_INPUT3D;
-#endif // defined(DEPTH_INPUT3D)
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+ int4 in_s32 = vload4(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // Store the result with the offset contribution
+ vstore4(in_s32, 0, (__global int *)mm_result_addr);
+}
+
+#if defined(RESULT_OFFSET) && defined(RESULT_MULTIPLIER) && defined(RESULT_SHIFT)
+/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel and it quantizes down to uint8.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel), adds to it the offset contribution of matrix A and matrix B and quantizes to uint8 through the output stage.
+ *
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * The result before the output stage is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * This result is quantized down to uint8 using the output stage. The output stage computes the following operations:
+ *
+ * -# Add offset terms to final result
+ * -# Multiply each entry of result by result_mult_int
+ * -# Add bias to final result (if -DADD_BIAS is passed at compile time)
+ * -# Shift the int32 accumulator by result_shift
+ * -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
+ * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_offset_contribution_quantize_down(TENSOR3D_DECLARATION(mm_result)
#if defined(A_OFFSET)
- Image sum_col = CONVERT_TO_IMAGE_STRUCT(sum_col);
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ ,
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ const int x = get_global_id(0) * 4;
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
- // Compute the offset contribution due to A_OFFSET
-#if defined(SUM_COL_HAS_BATCHES)
- a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr + batch_id * sum_col_stride_y));
-#else // defined(MATRIX_B_HAS_BATCHES)
- a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr));
-#endif // defined(MATRIX_B_HAS_BATCHES)
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
- a_offset_s32 *= (int4)A_OFFSET;
+ // Compute offset contribution
+ int4 offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
+
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+
+ int4 in_s32 = vload4(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // -------------- OUTPUT STAGE
+
+ // Add the offset terms to GEMM's result
+ in_s32 += (int4)RESULT_OFFSET;
+
+ // Multiply by result_mult_int and shift
+ in_s32 *= RESULT_MULTIPLIER;
+ in_s32 >>= RESULT_SHIFT;
+
+ uchar4 res = convert_uchar4_sat(in_s32);
+
+#if defined(MIN_BOUND)
+ res = max(res, (uchar4)MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res = min(res, (uchar4)MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ vstore4(res, 0, dst_addr);
+}
+
+/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel and it quantizes down to uint8.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel), adds to it the offset contribution of matrix A and matrix B and quantizes to uint8 through the output stage.
+ *
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * The result before the output stage is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * This result is quantized down to uint8 using the output stage. The output stage computes the following operations:
+ *
+ * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Round to nearest division by a power-of-two using result_shift
+ * -# Add offset to each result
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_offset_contribution_quantize_down_fixedpoint(TENSOR3D_DECLARATION(mm_result)
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
- Image sum_row = CONVERT_TO_IMAGE_STRUCT(sum_row);
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ ,
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ const int x = get_global_id(0) * 4;
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
- // Compute the offset contribution due to B_OFFSET
-#if defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
- b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + batch_id * sum_row_stride_y)) + (z % (int)DEPTH_INPUT3D) * (int)HEIGHT_INPUT3D + y);
-#else // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
- b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + batch_id * sum_row_stride_y)) + y);
-#endif // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
- b_offset_s32 *= (int4)B_OFFSET;
+ // Compute offset contribution
+ int4 offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
- const int4 offset_term_s32 = (int4)K_OFFSET + a_offset_s32 + b_offset_s32;
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
- int4 in_s32 = vload4(0, (__global int *)mm_result.ptr);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ int4 in_s32 = vload4(0, (__global int *)mm_result_addr);
// Add the offset terms to GEMM's result
in_s32 += offset_term_s32;
- // Store the result with the offset contribution
- vstore4(in_s32, 0, (__global int *)mm_result.ptr);
+ // -------------- OUTPUT STAGE
+
+ // Multiply by result_mult_int and shift
+ in_s32 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(in_s32, RESULT_MULTIPLIER, RESULT_SHIFT, 4);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += (int4)RESULT_OFFSET;
+
+ uchar4 res = convert_uchar4_sat(in_s32);
+
+#if defined(MIN_BOUND)
+ res = max(res, (uchar4)MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res = min(res, (uchar4)MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ vstore4(res, 0, dst_addr);
}
+#endif // defined(K_OFFSET) && defined(RESULT_OFFSET) && defined(RESULT_MULTIPLIER) && defined(RESULT_SHIFT)
#endif // defined(K_OFFSET)
#if defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
@@ -2128,10 +3027,10 @@ __kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
- * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
- * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2148,39 +3047,43 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
- Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
- Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
-#if defined(ADD_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-#endif // defined(ADD_BIAS)
+ int x = get_global_id(0) * 4;
+ int y = get_global_id(1);
+ int z = get_global_id(2);
- int16 input_values = vload16(0, (__global int *)src.ptr);
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
- // Add the offset terms to GEMM's result
- input_values += (int16)RESULT_OFFSET;
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ int4 input_values = vload4(0, (__global int *)src_addr);
#if defined(ADD_BIAS)
// Add bias
- const int16 biases_values = vload16(0, (__global int *)biases.ptr);
- input_values += (int16)biases_values;
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ int4 biases_values = vload4(0, (__global int *)bias_addr);
+ input_values += (int4)biases_values;
#endif // defined(ADD_BIAS)
+ // Add the offset terms to GEMM's result
+ input_values += (int4)RESULT_OFFSET;
+
// Multiply by result_mult_int and shift
input_values *= RESULT_MULT_INT;
input_values >>= RESULT_SHIFT;
- uchar16 res = convert_uchar16_sat(input_values);
+ uchar4 res = convert_uchar4_sat(input_values);
#if defined(MIN_BOUND)
- res = max(res, (uchar16)MIN_BOUND);
+ res = max(res, (uchar4)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
- res = min(res, (uchar16)MAX_BOUND);
+ res = min(res, (uchar4)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
- vstore16(res, 0, dst.ptr);
+ vstore4(res, 0, dst_addr);
}
#endif // defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
@@ -2197,7 +3100,7 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
* -# Clamp the value between the specified min and max bounds
* -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
*
- * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET_AFTER_SHIFT, -DRESULT_FIXEDPOINT_MULTIPLIER and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
@@ -2211,10 +3114,10 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
- * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
- * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2222,58 +3125,50 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] dst_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_output_stage_quantize_down_fixedpoint(TENSOR3D_DECLARATION(src),
#if defined(ADD_BIAS)
VECTOR_DECLARATION(biases),
#endif // defined(ADD_BIAS)
-#if defined(DST_HEIGHT)
- TENSOR4D_DECLARATION(dst))
-#else // defined(DST_HEIGHT)
TENSOR3D_DECLARATION(dst))
-#endif // defined(DST_HEIGHT)
{
// Compute source and destination addresses
- Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
-#if defined(DST_HEIGHT)
- Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(dst, 1);
- dst.ptr += get_global_id(0) * dst_step_x + (get_global_id(1) % DST_HEIGHT) * dst_step_y + (get_global_id(1) / DST_HEIGHT) * dst_step_z + get_global_id(2) * dst_step_w;
-#else // defined(DST_HEIGHT)
- Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
-#endif // defined(DST_HEIGHT)
+ int x = get_global_id(0) * 4;
+ int y = get_global_id(1);
+ int z = get_global_id(2);
-#if defined(ADD_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-#endif // defined(ADD_BIAS)
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
- int16 input_values = vload16(0, (__global int *)src.ptr);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ int4 input_values = vload4(0, (__global int *)src_addr);
#if defined(ADD_BIAS)
// Add bias
- const int16 biases_values = vload16(0, (__global int *)biases.ptr);
- input_values += (int16)biases_values;
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ int4 biases_values = vload4(0, (__global int *)bias_addr);
+ input_values += (int4)biases_values;
#endif // defined(ADD_BIAS)
// Multiply by result_mult_int and shift
- input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, 16);
+ input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, 4);
// Add the offset terms to GEMM's result
- input_values += (int16)RESULT_OFFSET_AFTER_SHIFT;
+ input_values += (int4)RESULT_OFFSET_AFTER_SHIFT;
- uchar16 res = convert_uchar16_sat(input_values);
+ uchar4 res = convert_uchar4_sat(input_values);
#if defined(MIN_BOUND)
- res = max(res, (uchar16)MIN_BOUND);
+ res = max(res, (uchar4)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
- res = min(res, (uchar16)MAX_BOUND);
+ res = min(res, (uchar4)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
- vstore16(res, 0, dst.ptr);
+ vstore4(res, 0, dst_addr);
}
#endif // defined(RESULT_OFFSET_AFTER_SHIFT) && defined(RESULT_FIXEDPOINT_MULTIPLIER) && defined(RESULT_SHIFT)