aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--arm_compute/core/CL/CLKernels.h1
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h5
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h13
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h100
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h20
-rw-r--r--arm_compute/core/Types.h49
-rw-r--r--arm_compute/core/Utils.h7
-rw-r--r--arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h51
-rw-r--r--arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h54
-rw-r--r--arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h18
-rw-r--r--arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h6
-rw-r--r--src/core/CL/CLHelpers.cpp7
-rw-r--r--src/core/CL/CLKernelLibrary.cpp3
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution_quantized.cl328
-rw-r--r--src/core/CL/cl_kernels/gemm.cl10
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl1527
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp3
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp22
-rw-r--r--src/core/CL/kernels/CLGEMMInterleave4x4Kernel.cpp3
-rw-r--r--src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp9
-rw-r--r--src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp51
-rw-r--r--src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp301
-rw-r--r--src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp61
-rw-r--r--src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp2
-rw-r--r--src/core/CL/kernels/CLGEMMLowpReductionKernel.cpp9
-rw-r--r--src/core/Utils.cpp13
-rw-r--r--src/runtime/CL/functions/CLFullyConnectedLayer.cpp3
-rw-r--r--src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp236
-rw-r--r--src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp107
-rw-r--r--src/runtime/CL/functions/CLGEMMLowpOutputStage.cpp8
-rw-r--r--src/runtime/NEON/functions/NEFullyConnectedLayer.cpp3
-rw-r--r--src/runtime/NEON/functions/NEGEMMConvolutionLayer.cpp4
-rw-r--r--src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.cpp8
-rw-r--r--tests/benchmark/fixtures/GEMMLowpFixture.h2
-rw-r--r--tests/validate_examples/cl_gemm.cpp2
-rw-r--r--tests/validation/CL/GEMMLowp.cpp7
-rw-r--r--tests/validation/NEON/GEMMLowp.cpp3
-rw-r--r--tests/validation/fixtures/GEMMLowpFixture.h3
38 files changed, 2322 insertions, 737 deletions
diff --git a/arm_compute/core/CL/CLKernels.h b/arm_compute/core/CL/CLKernels.h
index 1e456fa17e..36abb7bd78 100644
--- a/arm_compute/core/CL/CLKernels.h
+++ b/arm_compute/core/CL/CLKernels.h
@@ -70,6 +70,7 @@
#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloatKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.h"
diff --git a/arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h b/arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h
index 4592fc2921..96b01b0237 100644
--- a/arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h
@@ -68,14 +68,15 @@ public:
* @param[out] output Output tensor. Data type supported: same as @p input
* @param[in] mult_interleave4x4_height (Optional) Multiplication factor for the height of the 4x4 interleave block
* @param[in] reinterpret_input_as_3d (Optional) True if the input has to be reinterpreted as 3D tensor
+ * @param[in] unroll_block (Optional) True if the 4x4 block has to be unrolled rather than transposed
*/
- void configure(const ICLTensor *input, ICLTensor *output, int mult_interleave4x4_height = 1, bool reinterpret_input_as_3d = false);
+ void configure(const ICLTensor *input, ICLTensor *output, int mult_interleave4x4_height = 1, bool reinterpret_input_as_3d = false, bool unroll_block = false);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMInterleave4x4Kernel
*
* @param[in] input Input tensor info. Data types supported: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
* @param[in] output Output tensor info which stores the interleaved matrix. Data type supported: same as @p input.
* @param[in] mult_interleave4x4_height Multiplication factor for the height of the 4x4 interleave block
- * @param[in] reinterpret_input_as_3d (Optional) True if the input has to be reinterpreted as 3D tensor
+ * @param[in] reinterpret_input_as_3d True if the input has to be reinterpreted as 3D tensor
*
* @return a status
*/
diff --git a/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h b/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h
index 871b97c1d7..e6b79176b5 100644
--- a/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -58,16 +58,18 @@ public:
CLGEMMLowpOffsetContributionKernel &operator=(CLGEMMLowpOffsetContributionKernel &&) = default;
/** Initialise the kernel's input and output.
*
- * @param[in, out] mm_result Input tensor containing the result of @ref CLGEMMLowpMatrixMultiplyKernel. Data type supported: S32
+ * @param[in, out] mm_result Input tensor containing the result of @ref CLGEMMLowpMatrixMultiplyKernel
* @param[in] vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
* Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
* @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
* Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
* @param[in] k Number of matrix A columns or Matrix B rows
* @param[in] a_offset Offset to be added to each element of the matrix A.
* @param[in] b_offset Offset to be added to each element of the matrix B.
*/
- void configure(ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset);
+ void configure(ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, int32_t k, int32_t a_offset, int32_t b_offset);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpOffsetContributionKernel
*
* @param[in] mm_result Input tensor containing the result of @ref CLGEMMLowpOffsetContributionKernel. Data type supported: S32
@@ -75,12 +77,14 @@ public:
* Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
* @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
* Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
* @param[in] a_offset Offset to be added to each element of the matrix A.
* @param[in] b_offset Offset to be added to each element of the matrix B.
*
* @return a status
*/
- static Status validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset);
+ static Status validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, int32_t a_offset, int32_t b_offset);
// Inherited methods overridden:
void run(const Window &window, cl::CommandQueue &queue) override;
@@ -89,6 +93,7 @@ private:
const ICLTensor *_vector_sum_col;
const ICLTensor *_vector_sum_row;
ICLTensor *_mm_result;
+ const ICLTensor *_bias;
};
} // namespace arm_compute
diff --git a/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h b/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h
new file mode 100644
index 0000000000..de06c88d5c
--- /dev/null
+++ b/arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h
@@ -0,0 +1,100 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef __ARM_COMPUTE_CLGEMMLOWPOFFSETCONTRIBUTIONOUTPUTSTAGEKERNEL_H__
+#define __ARM_COMPUTE_CLGEMMLOWPOFFSETCONTRIBUTIONOUTPUTSTAGEKERNEL_H__
+
+#include "arm_compute/core/CL/ICLKernel.h"
+
+namespace arm_compute
+{
+class ICLTensor;
+
+/** OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel and perform the output stage.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @ref CLGEMMLowpMatrixMultiplyKernel), adds to it the offset contribution
+ * of matrix A and matrix B and performs the output stage defined by the output_stage argument
+ *
+ */
+class CLGEMMLowpOffsetContributionOutputStageKernel : public ICLKernel
+{
+public:
+ /** Constructor */
+ CLGEMMLowpOffsetContributionOutputStageKernel();
+ /** Prevent instances of this class from being copied (As this class contains pointers)*/
+ CLGEMMLowpOffsetContributionOutputStageKernel(const CLGEMMLowpOffsetContributionOutputStageKernel &) = delete;
+ /** Prevent instances of this class from being copied (As this class contains pointers)*/
+ CLGEMMLowpOffsetContributionOutputStageKernel &operator=(const CLGEMMLowpOffsetContributionOutputStageKernel &) = delete;
+ /** Allow instances of this class to be moved */
+ CLGEMMLowpOffsetContributionOutputStageKernel(CLGEMMLowpOffsetContributionOutputStageKernel &&) = default;
+ /** Allow instances of this class to be moved */
+ CLGEMMLowpOffsetContributionOutputStageKernel &operator=(CLGEMMLowpOffsetContributionOutputStageKernel &&) = default;
+ /** Initialise the kernel's input and output.
+ *
+ * @param[in] mm_result Input tensor containing the result of @ref CLGEMMLowpMatrixMultiplyKernel. Data type supported: S32
+ * @param[in] vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
+ * Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
+ * @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
+ * Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
+ * @param[out] output Output tensor. Data type supported: QASYMM8
+ * @param[in] k Number of matrix A columns or Matrix B rows
+ * @param[in] a_offset Offset to be added to each element of the matrix A.
+ * @param[in] b_offset Offset to be added to each element of the matrix B.
+ * @param[in] output_stage GEMMLowp output stage info
+ */
+ void configure(const ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, ICLTensor *output, int32_t k, int32_t a_offset, int32_t b_offset,
+ const GEMMLowpOutputStageInfo &output_stage);
+ /** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpOffsetContributionKernel
+ *
+ * @param[in] mm_result Input tensor containing the result of @ref CLGEMMLowpOffsetContributionKernel. Data type supported: S32 or QASYMM8 if output_stage != NONE
+ * @param[in] vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
+ * Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
+ * @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
+ * Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
+ * @param[in] output Output tensor. Data type supported: QASYMM8
+ * @param[in] a_offset Offset to be added to each element of the matrix A.
+ * @param[in] b_offset Offset to be added to each element of the matrix B.
+ * @param[in] output_stage GEMMLowp output stage info
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output, int32_t a_offset,
+ int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage);
+
+ // Inherited methods overridden:
+ void run(const Window &window, cl::CommandQueue &queue) override;
+
+private:
+ const ICLTensor *_mm_result;
+ const ICLTensor *_vector_sum_col;
+ const ICLTensor *_vector_sum_row;
+ const ICLTensor *_bias;
+ ICLTensor *_output;
+};
+} // namespace arm_compute
+
+#endif /* __ARM_COMPUTE_CLGEMMLOWPOFFSETCONTRIBUTIONOUTPUTSTAGEKERNEL_H__ */
diff --git a/arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h b/arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h
index 1206206fdc..72373b50eb 100644
--- a/arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h
@@ -67,25 +67,22 @@ public:
* @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
* @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
* Along with @p min, this value can be used to implement "rectified linear unit" activation functions
- * @param[in] output_3d_depth (Optional) Depth of output in 3D (Defaults to 1)
*/
void configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift,
- int min = 0, int max = 0, unsigned int output_3d_depth = 1);
+ int min = 0, int max = 0);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel
*
- * @param[in] input Input tensor. Data type supported: S32
- * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
- * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
- * @param[in] output Output tensor. Data type supported: Data type supported: QASYMM8
- * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
- * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
+ * @param[in] input Input tensor. Data type supported: S32
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
+ * @param[in] output Output tensor. Data type supported: Data type supported: QASYMM8
+ * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
+ * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
* Along with @p min, this value can be used to implement "rectified linear unit" activation functions
- * @param[in] output_3d_depth (Optional) Depth of output in 3D (Defaults to 1)
*
* @return a status
*/
- static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
- int min = 0, int max = 0, unsigned int output_3d_depth = 1);
+ static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min = 0, int max = 0);
// Inherited methods overridden:
void run(const Window &window, cl::CommandQueue &queue) override;
@@ -94,7 +91,6 @@ private:
const ICLTensor *_input;
const ICLTensor *_bias;
ICLTensor *_output;
- bool _reinterpret_as_3d;
};
} // namespace arm_compute
#endif /* __ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32TOUINT8SCALEBYFIXEDPOINTKERNEL_H__ */
diff --git a/arm_compute/core/Types.h b/arm_compute/core/Types.h
index 5e04bcd0f4..134b8e2905 100644
--- a/arm_compute/core/Types.h
+++ b/arm_compute/core/Types.h
@@ -1205,6 +1205,26 @@ private:
const bool _reinterpret_input_as_3d;
};
+/** GEMMLowp output stage type */
+enum class GEMMLowpOutputStageType
+{
+ NONE, /**< No quantization to uint8 */
+ QUANTIZE_DOWN, /**< Quantize to uint8 using an integer multiplication */
+ QUANTIZE_DOWN_FIXEDPOINT, /**< Quantize to uint8 using a fixed point multiplication */
+ QUANTIZE_DOWN_FLOAT /**< Quantize to uint8 using a floating point multiplication */
+};
+
+/** GEMMLowp output stage info */
+struct GEMMLowpOutputStageInfo
+{
+ GEMMLowpOutputStageType type{ GEMMLowpOutputStageType::NONE }; /**< GEMMLowp output stage type */
+ int gemmlowp_offset{ 0 }; /**< GEMMLowp output stage offset used for quantizing to QASYMM8 */
+ int gemmlowp_multiplier{ 0 }; /**< GEMMLowp output stage multiplier used for quantizing to QASYMM8 */
+ int gemmlowp_shift{ 0 }; /**< GEMMLowp output stage shift used for quantizing to uint8 */
+ int gemmlowp_min_bound{ 0 }; /**< GEMMLowp min value used to saturate down the output result before converting back to QASYMM8 */
+ int gemmlowp_max_bound{ 0 }; /**< GEMMLowp max value used to saturate down the output result before converting back to QASYMM8 */
+};
+
/** GEMM information class. This class stores the necessary information to compute GEMM functions
*
* This object also contains the information about how matrix A and matrix B have been reshaped
@@ -1215,7 +1235,7 @@ class GEMMInfo
public:
/** Default constructor */
GEMMInfo()
- : _is_a_reshaped(false), _is_b_reshaped(false), _reshape_b_only_on_first_run(false), _depth_output_gemm3d(1), _reinterpret_input_as_3d(false), _retain_internal_weights(false)
+ : _is_a_reshaped(false), _is_b_reshaped(false), _reshape_b_only_on_first_run(false), _depth_output_gemm3d(1), _reinterpret_input_as_3d(false), _retain_internal_weights(false), _gemmlowp_output_stage()
{
}
/** Constructor
@@ -1227,11 +1247,13 @@ public:
* @param[in] reinterpret_input_as_3d (Optional) Reinterpret the input as 3D tensor. (i.e. this flag should be set to true when GEMM is used
* to perform 1x1 convolutions with the NHWC data layout)
* @param[in] retain_internal_weights (Optional) Retain the weights tensor from previous run
+ * @param[in] gemmlowp_output_stage (Optional) GEMMLowp Output stage info
*
*/
- GEMMInfo(bool is_a_reshaped, bool is_b_reshaped, bool reshape_b_only_on_first_run, int depth_output_gemm3d = 1, bool reinterpret_input_as_3d = false, bool retain_internal_weights = false)
+ GEMMInfo(bool is_a_reshaped, bool is_b_reshaped, bool reshape_b_only_on_first_run, int depth_output_gemm3d = 1, bool reinterpret_input_as_3d = false, bool retain_internal_weights = false,
+ GEMMLowpOutputStageInfo gemmlowp_output_stage = GEMMLowpOutputStageInfo())
: _is_a_reshaped(is_a_reshaped), _is_b_reshaped(is_b_reshaped), _reshape_b_only_on_first_run(reshape_b_only_on_first_run), _depth_output_gemm3d(depth_output_gemm3d),
- _reinterpret_input_as_3d(reinterpret_input_as_3d), _retain_internal_weights(retain_internal_weights)
+ _reinterpret_input_as_3d(reinterpret_input_as_3d), _retain_internal_weights(retain_internal_weights), _gemmlowp_output_stage(gemmlowp_output_stage)
{
}
/** Flag which specifies if the matrix A has been reshaped
@@ -1284,14 +1306,23 @@ public:
{
return _retain_internal_weights;
};
+ /** GEMMLowp output stage
+ *
+ * @return the GEMMLowp output stage info
+ */
+ GEMMLowpOutputStageInfo gemmlowp_output_stage() const
+ {
+ return _gemmlowp_output_stage;
+ };
private:
- const bool _is_a_reshaped;
- const bool _is_b_reshaped;
- const bool _reshape_b_only_on_first_run;
- const int _depth_output_gemm3d;
- const bool _reinterpret_input_as_3d;
- const bool _retain_internal_weights;
+ const bool _is_a_reshaped;
+ const bool _is_b_reshaped;
+ const bool _reshape_b_only_on_first_run;
+ const int _depth_output_gemm3d;
+ const bool _reinterpret_input_as_3d;
+ const bool _retain_internal_weights;
+ const GEMMLowpOutputStageInfo _gemmlowp_output_stage;
};
/** Winograd information */
diff --git a/arm_compute/core/Utils.h b/arm_compute/core/Utils.h
index cfd273618c..e7fbbfee65 100644
--- a/arm_compute/core/Utils.h
+++ b/arm_compute/core/Utils.h
@@ -927,6 +927,13 @@ const std::string &string_from_norm_type(NormType type);
* @return The string describing the pooling type.
*/
const std::string &string_from_pooling_type(PoolingType type);
+/** Translates a given GEMMLowp output stage to a string.
+ *
+ * @param[in] output_stage @ref GEMMLowpOutputStageInfo to be translated to string.
+ *
+ * @return The string describing the GEMMLowp output stage
+ */
+const std::string &string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage);
/** Convert a PixelValue to a string, represented through the specific data type
*
* @param[in] value The PixelValue to convert
diff --git a/arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h b/arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h
index 48b880174d..fbf0c08b36 100644
--- a/arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h
+++ b/arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h
@@ -157,43 +157,48 @@ public:
private:
/** Configures the appropriate matrix multiply routine
*
- * @param[in] input Input tensor. Data types supported: QASYMM8/F16/F32.
- * @param[in] weights Weights tensor. Data type supported: Same as @p input.
- * @param[in, out] output Output tensor. Data types supported: Same as @p input,
- * except for input of QASYMM8 type where output should be of S32 type.
- * @param[in] gemm_3d_depth (Optional) Depth of GEMM 3D (Defaults to 1)
+ * @param[in] input Input tensor. Data types supported: QASYMM8/F16/F32.
+ * @param[in] weights Weights tensor. Data type supported: Same as @p input.
+ * @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
+ * Data type supported: Should match @p input data type, except for input of QASYMM8 type where biases should be of S32 type.
+ * @param[in, out] output Output tensor. Data types supported: Same as @p input,
+ * except for input of QASYMM8 type where output should be of S32 type.
+ * @param[in] gemmlowp_output_stage GEMMLowp output stage info
+ * @param[in] gemm_3d_depth (Optional) Depth of GEMM 3D (Defaults to 1)
*/
- void configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, int gemm_3d_depth = 1);
+ void configure_mm(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth = 1);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMConvolutionLayer matrix multiply routines
*
- * @param[in] input Input tensor. Data types supported: QASYMM8/F16/F32.
- * @param[in] weights Weights tensor. Data type supported: Same as @p input.
- * @param[in] output Output tensor. Data types supported: Same as @p input,
- * except for input of QASYMM8 type where output should be of S32 type.
- * @param[in] gemm_3d_depth (Optional) Depth of GEMM 3D (Defaults to 1)
- * @param[in] skip_im2col (Optional) Flag which specifies if im2col has to be skipped. i.e. 1x1 convolution with NHWC data layout. (Default to false)
+ * @param[in] input Input tensor. Data types supported: QASYMM8/F16/F32.
+ * @param[in] weights Weights tensor. Data type supported: Same as @p input.
+ * @param[in] output Output tensor. Data types supported: Same as @p input,
+ * except for input of QASYMM8 type where output should be of S32 type.
+ * @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
+ * Data type supported: Should match @p input data type, except for input of QASYMM8 type where biases should be of S32 type.
+ * @param[in] gemmlowp_output_stage GEMMLowp output stage info
+ * @param[in] gemm_3d_depth (Optional) Depth of GEMM 3D (Defaults to 1)
+ * @param[in] skip_im2col (Optional) Flag which specifies if im2col has to be skipped. i.e. 1x1 convolution with NHWC data layout. (Default to false)
*
* @return a status
*/
- static Status validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, int gemm_3d_depth = 1, bool skip_im2col = false);
+ static Status validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
+ int gemm_3d_depth = 1, bool skip_im2col = false);
private:
- CLMemoryGroup _memory_group;
- CLConvolutionLayerReshapeWeights _reshape_weights;
- CLIm2ColKernel _im2col_kernel;
- CLGEMM _mm_gemm;
- CLGEMMLowpMatrixMultiplyCore _mm_gemmlowp;
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloat _gemmlowp_output_stage;
- CLCol2ImKernel _col2im_kernel;
- CLActivationLayer _activationlayer_function;
- CLArithmeticAdditionKernel _add_bias_kernel;
+ CLMemoryGroup _memory_group;
+ CLConvolutionLayerReshapeWeights _reshape_weights;
+ CLIm2ColKernel _im2col_kernel;
+ CLGEMM _mm_gemm;
+ CLGEMMLowpMatrixMultiplyCore _mm_gemmlowp;
+ CLCol2ImKernel _col2im_kernel;
+ CLActivationLayer _activationlayer_function;
+ CLArithmeticAdditionKernel _add_bias_kernel;
const ICLTensor *_original_weights;
CLTensor _im2col_output;
CLTensor _weights_reshaped;
CLTensor _gemm_output;
- CLTensor _tmp_output;
DataLayout _data_layout;
diff --git a/arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h b/arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h
index f404ccdf4c..82f307a773 100644
--- a/arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h
+++ b/arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h
@@ -27,6 +27,7 @@
#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpReductionKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMTranspose1xWKernel.h"
#include "arm_compute/runtime/CL/CLMemoryGroup.h"
@@ -45,7 +46,8 @@ class ICLTensor;
* -# @ref CLGEMMLowpMatrixMultiplyKernel
* -# @ref CLGEMMLowpMatrixAReductionKernel (if the offset of matrix B is not 0)
* -# @ref CLGEMMLowpMatrixBReductionKernel (if the offset of matrix A is not 0)
- * -# @ref CLGEMMLowpOffsetContributionKernel
+ * -# @ref CLGEMMLowpOffsetContributionKernel (if gemm_info.gemmlowp_output_stage == NONE)
+ * -# @ref CLGEMMLowpOffsetContributionOutputStageKernel (if gemm_info.gemmlowp_output_stage != NONE)
*
*/
class CLGEMMLowpMatrixMultiplyCore : public IFunction
@@ -63,54 +65,60 @@ public:
CLGEMMLowpMatrixMultiplyCore &operator=(CLGEMMLowpMatrixMultiplyCore &&) = default;
/** Initialise the kernel's inputs, output
*
- * @note GEMM_LOWP: low precision GEMM kernel
+ * @note GEMMLowp: low precision GEMM kernel. [A * B + C]
* This kernel performs the following computations:
*
* -# Convert a values from QASYMM8 to int32 and add a_offset to each of them.
* -# Convert b values from QASYMM8 to int32 add b_offset to each of them.
* -# Compute the matrix product of the resulting a * b in int32.
+ * -# Quantize to uint8 if gemm_info.gemmlowp_output_stage != NONE
*
* @param[in] a First input tensor (Matrix A). Data type supported: QASYMM8.
* @param[in] b Second input tensor (Matrix B). Data type supported: same as @p a
- * @param[out] output Output tensor. Data type supported: Data type supported: S32
+ * @param[in] c Third input tensor (Matrix C). It can be a nullptr. Data type supported: S32
+ * @param[out] output Output tensor. Data type supported: S32 or QASYMM8 if gemm_info.gemmlowp_output_stage != NONE
* @param[in] gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
* if the reshape of matrix B should be executed only for the first run
*/
- void configure(const ICLTensor *a, const ICLTensor *b, ICLTensor *output, const GEMMInfo &gemm_info = GEMMInfo());
+ void configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info = GEMMInfo());
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpMatrixMultiplyCore
*
* @param[in] a First input tensor (Matrix A). Data type supported: QASYMM8.
* @param[in] b Second input tensor (Matrix B). Data type supported: same as @p a
- * @param[in] output Output tensor. Data type supported: Data type supported: S32
+ * @param[in] c Third input tensor (Matrix C). It can be a nullptr. Data type supported: S32
+ * @param[in] output Output tensor. Data type supported: S32 or QASYMM8 if gemm_info.gemmlowp_output_stage != NONE
* @param[in] gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
* if the reshape of matrix B should be executed only for the first run
*
* @return a status
*/
- static Status validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output, const GEMMInfo &gemm_info = GEMMInfo());
+ static Status validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info = GEMMInfo());
// Inherited methods overridden:
void run() override;
void prepare() override;
private:
- CLMemoryGroup _memory_group;
- CLGEMMLowpMatrixMultiplyKernel _mm_kernel;
- CLGEMMInterleave4x4Kernel _mtx_a_reshape_kernel;
- CLGEMMTranspose1xWKernel _mtx_b_reshape_kernel;
- CLGEMMLowpMatrixAReductionKernel _mtx_a_reduction_kernel;
- CLGEMMLowpMatrixBReductionKernel _mtx_b_reduction_kernel;
- CLGEMMLowpOffsetContributionKernel _offset_contribution_kernel;
- CLTensor _vector_sum_col;
- CLTensor _vector_sum_row;
- CLTensor _tmp_a;
- CLTensor _tmp_b;
- const ICLTensor *_original_b;
- int32_t _a_offset;
- int32_t _b_offset;
- bool _is_interleaved_transposed;
- bool _reshape_b_only_on_first_run;
- bool _is_prepared;
+ CLMemoryGroup _memory_group;
+ CLGEMMLowpMatrixMultiplyKernel _mm_kernel;
+ CLGEMMInterleave4x4Kernel _mtx_a_reshape_kernel;
+ CLGEMMTranspose1xWKernel _mtx_b_reshape_kernel;
+ CLGEMMLowpMatrixAReductionKernel _mtx_a_reduction_kernel;
+ CLGEMMLowpMatrixBReductionKernel _mtx_b_reduction_kernel;
+ CLGEMMLowpOffsetContributionKernel _offset_contribution_kernel;
+ CLGEMMLowpOffsetContributionOutputStageKernel _offset_contribution_output_stage_kernel;
+ CLTensor _vector_sum_col;
+ CLTensor _vector_sum_row;
+ CLTensor _tmp_a;
+ CLTensor _tmp_b;
+ CLTensor _mm_result_s32;
+ const ICLTensor *_original_b;
+ int32_t _a_offset;
+ int32_t _b_offset;
+ bool _is_interleaved_transposed;
+ bool _reshape_b_only_on_first_run;
+ bool _is_prepared;
+ bool _fuse_output_stage;
};
}
#endif /*__ARM_COMPUTE_CLGEMMLOWPMATRIXMULTIPLYCORE_H__ */
diff --git a/arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h b/arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h
index 51fcbe9392..3330b40d8a 100644
--- a/arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h
+++ b/arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h
@@ -131,24 +131,22 @@ public:
* @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
* @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
* Along with @p min, this value can be used to implement "rectified linear unit" activation functions
- * @param[in] output_3d_depth (Optional) Depth of output in 3D (Defaults to 1)
*/
void configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift,
- int min = 0, int max = 0, unsigned int output_3d_depth = 1);
+ int min = 0, int max = 0);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
*
- * @param[in] input Input tensor. It is the output of @ref CLGEMMLowpMatrixMultiplyCore function. Data type supported: S32
- * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
- * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
- * @param[in] output Output tensor. Data type supported: Data type supported: QASYMM8
- * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
- * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
+ * @param[in] input Input tensor. It is the output of @ref CLGEMMLowpMatrixMultiplyCore function. Data type supported: S32
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
+ * @param[in] output Output tensor. Data type supported: Data type supported: QASYMM8
+ * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
+ * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
* Along with @p min, this value can be used to implement "rectified linear unit" activation functions
- * @param[in] output_3d_depth (Optional) Depth of output in 3D (Defaults to 1)
*
* @return a status
*/
- static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min = 0, int max = 0, unsigned int output_3d_depth = 1);
+ static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min = 0, int max = 0);
};
/** Basic function to execute CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloat on OpenCL.
diff --git a/arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h b/arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h
index 3db76f423c..682475c824 100644
--- a/arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h
+++ b/arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h
@@ -75,22 +75,24 @@ public:
*
* @param[in] a First input tensor (Matrix A). Data type supported: QASYMM8.
* @param[in] b Second input tensor (Matrix B). Data type supported: same as @p a
+ * @param[in] c Third input tensor (Matrix C). It can be a nullptr. Data type supported: S32
* @param[out] output Output tensor. Data type supported: Data type supported: S32
* @param[in] gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
* if the reshape of matrix B should be executed only for the first run
*/
- void configure(const ITensor *a, const ITensor *b, ITensor *output, const GEMMInfo &gemm_info = GEMMInfo());
+ void configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *output, const GEMMInfo &gemm_info = GEMMInfo());
/** Static function to check if given info will lead to a valid configuration of @ref NEGEMMLowpMatrixMultiplyCore
*
* @param[in] a First input tensor (Matrix A). Data type supported: QASYMM8.
* @param[in] b Second input tensor (Matrix B). Data type supported: same as @p a
+ * @param[in] c Third input tensor (Matrix C). It can be a nullptr. Data type supported: S32
* @param[in] output Output tensor. Data type supported: Data type supported: S32
* @param[in] gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
* if the reshape of matrix B should be executed only for the first run
*
* @return a status
*/
- static Status validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output, const GEMMInfo &gemm_info = GEMMInfo());
+ static Status validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info = GEMMInfo());
// Inherited methods overridden
void run() override;
diff --git a/src/core/CL/CLHelpers.cpp b/src/core/CL/CLHelpers.cpp
index 5c435ddc22..0947d58973 100644
--- a/src/core/CL/CLHelpers.cpp
+++ b/src/core/CL/CLHelpers.cpp
@@ -144,7 +144,12 @@ bool fp16_supported(const cl::Device &device)
bool dot8_supported(const cl::Device &device)
{
- return device_supports_extension(device, "cl_arm_integer_dot_product_int8");
+ std::string device_name = device.getInfo<CL_DEVICE_NAME>();
+ const GPUTarget gpu_target = get_target_from_name(device_name);
+
+ // SW_WORKAROUND: Workaround for DDK revision r14p0.to enable cl_arm_integer_dot_product_int8
+ std::set<GPUTarget> sw_workaround_issue = {GPUTarget::G76};
+ return (device_supports_extension(device, "cl_arm_integer_dot_product_int8") || sw_workaround_issue.count(gpu_target) != 0);
}
bool dot8_acc_supported(const cl::Device &device)
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 880963de7b..b9b3ce970b 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -259,6 +259,7 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemm_lc_vm_f32", "gemm.cl" },
{ "gemm_transpose1xW", "gemm.cl" },
{ "gemmlowp_matrix_a_reduction", "gemmlowp.cl" },
+ { "gemmlowp_matrix_a_reduction_dot8", "gemmlowp.cl" },
{ "gemmlowp_matrix_b_reduction", "gemmlowp.cl" },
{ "gemmlowp_mm_bifrost", "gemmlowp.cl" },
{ "gemmlowp_mm_bifrost_dot8", "gemmlowp.cl" },
@@ -267,6 +268,8 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemmlowp_mm_interleaved_transposed_bifrost_dot8", "gemmlowp.cl" },
{ "gemmlowp_mm_interleaved_transposed_midgard", "gemmlowp.cl" },
{ "gemmlowp_offset_contribution", "gemmlowp.cl" },
+ { "gemmlowp_offset_contribution_quantize_down", "gemmlowp.cl" },
+ { "gemmlowp_offset_contribution_quantize_down_fixedpoint", "gemmlowp.cl" },
{ "gemmlowp_output_stage_quantize_down", "gemmlowp.cl" },
{ "gemmlowp_output_stage_quantize_down_fixedpoint", "gemmlowp.cl" },
{ "gemmlowp_output_stage_quantize_down_float", "gemmlowp.cl" },
diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
index 3239885abc..421c8b6aab 100644
--- a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
+++ b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
@@ -24,7 +24,7 @@
#include "helpers_asymm.h"
-#if defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)
+#if defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
#if defined(FUSED_ACTIVATION)
#define DATA_TYPE uchar
@@ -39,9 +39,9 @@
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val = arm_dot_acc((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3), val);
+#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), val);
#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val += arm_dot((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3));
+#define ARM_DOT(x, y, val) val += arm_dot((x), (y));
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
@@ -248,7 +248,16 @@ __kernel void depthwise_convolution_3x3_quantized_nchw(
#endif /* CONV_STRIDE_Y == 1 */
#endif /* K_OFFSET != 0 */
+#if defined(REAL_MULTIPLIER)
+
+ values0 = CONVERT(round(CONVERT(values0, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+
+#endif // defined(REAL_MULTIPLIER)
+
values0 += (int8)OUTPUT_OFFSET;
uchar8 res0 = convert_uchar8_sat(values0);
res0 = max(res0, (uchar8)0);
@@ -256,8 +265,16 @@ __kernel void depthwise_convolution_3x3_quantized_nchw(
vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
#if CONV_STRIDE_Y == 1
+#if defined(REAL_MULTIPLIER)
+
+ values1 = CONVERT(round(CONVERT(values1, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+
+#endif // defined(REAL_MULTIPLIER)
+
values1 += (int8)OUTPUT_OFFSET;
uchar8 res1 = convert_uchar8_sat(values1);
res1 = max(res1, (uchar8)0);
@@ -397,69 +414,69 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nchw(
#endif /* WEIGHTS_OFFSET != 0 */
#endif // CONV_STRIDE_Y == 1
- ARM_DOT(left0.s0, middle0.s0, right0.s0, left1.s0, w0.s0, w0.s1, w0.s2, w1.s0, values0.s0);
- ARM_DOT(middle1.s0, right1.s0, left2.s0, middle2.s0, w1.s1, w1.s2, w2.s0, w2.s1, values0.s0);
+ ARM_DOT((uchar4)(left0.s0, middle0.s0, right0.s0, left1.s0), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s0);
+ ARM_DOT((uchar4)(middle1.s0, right1.s0, left2.s0, middle2.s0), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s0);
values0.s0 += right2.s0 * w2.s2;
- ARM_DOT(left0.s1, middle0.s1, right0.s1, left1.s1, w0.s0, w0.s1, w0.s2, w1.s0, values0.s1);
- ARM_DOT(middle1.s1, right1.s1, left2.s1, middle2.s1, w1.s1, w1.s2, w2.s0, w2.s1, values0.s1);
+ ARM_DOT((uchar4)(left0.s1, middle0.s1, right0.s1, left1.s1), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s1);
+ ARM_DOT((uchar4)(middle1.s1, right1.s1, left2.s1, middle2.s1), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s1);
values0.s1 += right2.s1 * w2.s2;
- ARM_DOT(left0.s2, middle0.s2, right0.s2, left1.s2, w0.s0, w0.s1, w0.s2, w1.s0, values0.s2);
- ARM_DOT(middle1.s2, right1.s2, left2.s2, middle2.s2, w1.s1, w1.s2, w2.s0, w2.s1, values0.s2);
+ ARM_DOT((uchar4)(left0.s2, middle0.s2, right0.s2, left1.s2), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s2);
+ ARM_DOT((uchar4)(middle1.s2, right1.s2, left2.s2, middle2.s2), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s2);
values0.s2 += right2.s2 * w2.s2;
- ARM_DOT(left0.s3, middle0.s3, right0.s3, left1.s3, w0.s0, w0.s1, w0.s2, w1.s0, values0.s3);
- ARM_DOT(middle1.s3, right1.s3, left2.s3, middle2.s3, w1.s1, w1.s2, w2.s0, w2.s1, values0.s3);
+ ARM_DOT((uchar4)(left0.s3, middle0.s3, right0.s3, left1.s3), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s3);
+ ARM_DOT((uchar4)(middle1.s3, right1.s3, left2.s3, middle2.s3), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s3);
values0.s3 += right2.s3 * w2.s2;
- ARM_DOT(left0.s4, middle0.s4, right0.s4, left1.s4, w0.s0, w0.s1, w0.s2, w1.s0, values0.s4);
- ARM_DOT(middle1.s4, right1.s4, left2.s4, middle2.s4, w1.s1, w1.s2, w2.s0, w2.s1, values0.s4);
+ ARM_DOT((uchar4)(left0.s4, middle0.s4, right0.s4, left1.s4), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s4);
+ ARM_DOT((uchar4)(middle1.s4, right1.s4, left2.s4, middle2.s4), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s4);
values0.s4 += right2.s4 * w2.s2;
- ARM_DOT(left0.s5, middle0.s5, right0.s5, left1.s5, w0.s0, w0.s1, w0.s2, w1.s0, values0.s5);
- ARM_DOT(middle1.s5, right1.s5, left2.s5, middle2.s5, w1.s1, w1.s2, w2.s0, w2.s1, values0.s5);
+ ARM_DOT((uchar4)(left0.s5, middle0.s5, right0.s5, left1.s5), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s5);
+ ARM_DOT((uchar4)(middle1.s5, right1.s5, left2.s5, middle2.s5), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s5);
values0.s5 += right2.s5 * w2.s2;
- ARM_DOT(left0.s6, middle0.s6, right0.s6, left1.s6, w0.s0, w0.s1, w0.s2, w1.s0, values0.s6);
- ARM_DOT(middle1.s6, right1.s6, left2.s6, middle2.s6, w1.s1, w1.s2, w2.s0, w2.s1, values0.s6);
+ ARM_DOT((uchar4)(left0.s6, middle0.s6, right0.s6, left1.s6), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s6);
+ ARM_DOT((uchar4)(middle1.s6, right1.s6, left2.s6, middle2.s6), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s6);
values0.s6 += right2.s6 * w2.s2;
- ARM_DOT(left0.s7, middle0.s7, right0.s7, left1.s7, w0.s0, w0.s1, w0.s2, w1.s0, values0.s7);
- ARM_DOT(middle1.s7, right1.s7, left2.s7, middle2.s7, w1.s1, w1.s2, w2.s0, w2.s1, values0.s7);
+ ARM_DOT((uchar4)(left0.s7, middle0.s7, right0.s7, left1.s7), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s7);
+ ARM_DOT((uchar4)(middle1.s7, right1.s7, left2.s7, middle2.s7), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s7);
values0.s7 += right2.s7 * w2.s2;
#if CONV_STRIDE_Y == 1
- ARM_DOT(left1.s0, middle1.s0, right1.s0, left2.s0, w0.s0, w0.s1, w0.s2, w1.s0, values1.s0);
- ARM_DOT(middle2.s0, right2.s0, left3.s0, middle3.s0, w1.s1, w1.s2, w2.s0, w2.s1, values1.s0);
+ ARM_DOT((uchar4)(left1.s0, middle1.s0, right1.s0, left2.s0), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s0);
+ ARM_DOT((uchar4)(middle2.s0, right2.s0, left3.s0, middle3.s0), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s0);
values1.s0 += right3.s0 * w2.s2;
- ARM_DOT(left1.s1, middle1.s1, right1.s1, left2.s1, w0.s0, w0.s1, w0.s2, w1.s0, values1.s1);
- ARM_DOT(middle2.s1, right2.s1, left3.s1, middle3.s1, w1.s1, w1.s2, w2.s0, w2.s1, values1.s1);
+ ARM_DOT((uchar4)(left1.s1, middle1.s1, right1.s1, left2.s1), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s1);
+ ARM_DOT((uchar4)(middle2.s1, right2.s1, left3.s1, middle3.s1), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s1);
values1.s1 += right3.s1 * w2.s2;
- ARM_DOT(left1.s2, middle1.s2, right1.s2, left2.s2, w0.s0, w0.s1, w0.s2, w1.s0, values1.s2);
- ARM_DOT(middle2.s2, right2.s2, left3.s2, middle3.s2, w1.s1, w1.s2, w2.s0, w2.s1, values1.s2);
+ ARM_DOT((uchar4)(left1.s2, middle1.s2, right1.s2, left2.s2), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s2);
+ ARM_DOT((uchar4)(middle2.s2, right2.s2, left3.s2, middle3.s2), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s2);
values1.s2 += right3.s2 * w2.s2;
- ARM_DOT(left1.s3, middle1.s3, right1.s3, left2.s3, w0.s0, w0.s1, w0.s2, w1.s0, values1.s3);
- ARM_DOT(middle2.s3, right2.s3, left3.s3, middle3.s3, w1.s1, w1.s2, w2.s0, w2.s1, values1.s3);
+ ARM_DOT((uchar4)(left1.s3, middle1.s3, right1.s3, left2.s3), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s3);
+ ARM_DOT((uchar4)(middle2.s3, right2.s3, left3.s3, middle3.s3), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s3);
values1.s3 += right3.s3 * w2.s2;
- ARM_DOT(left1.s4, middle1.s4, right1.s4, left2.s4, w0.s0, w0.s1, w0.s2, w1.s0, values1.s4);
- ARM_DOT(middle2.s4, right2.s4, left3.s4, middle3.s4, w1.s1, w1.s2, w2.s0, w2.s1, values1.s4);
+ ARM_DOT((uchar4)(left1.s4, middle1.s4, right1.s4, left2.s4), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s4);
+ ARM_DOT((uchar4)(middle2.s4, right2.s4, left3.s4, middle3.s4), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s4);
values1.s4 += right3.s4 * w2.s2;
- ARM_DOT(left1.s5, middle1.s5, right1.s5, left2.s5, w0.s0, w0.s1, w0.s2, w1.s0, values1.s5);
- ARM_DOT(middle2.s5, right2.s5, left3.s5, middle3.s5, w1.s1, w1.s2, w2.s0, w2.s1, values1.s5);
+ ARM_DOT((uchar4)(left1.s5, middle1.s5, right1.s5, left2.s5), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s5);
+ ARM_DOT((uchar4)(middle2.s5, right2.s5, left3.s5, middle3.s5), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s5);
values1.s5 += right3.s5 * w2.s2;
- ARM_DOT(left1.s6, middle1.s6, right1.s6, left2.s6, w0.s0, w0.s1, w0.s2, w1.s0, values1.s6);
- ARM_DOT(middle2.s6, right2.s6, left3.s6, middle3.s6, w1.s1, w1.s2, w2.s0, w2.s1, values1.s6);
+ ARM_DOT((uchar4)(left1.s6, middle1.s6, right1.s6, left2.s6), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s6);
+ ARM_DOT((uchar4)(middle2.s6, right2.s6, left3.s6, middle3.s6), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s6);
values1.s6 += right3.s6 * w2.s2;
- ARM_DOT(left1.s7, middle1.s7, right1.s7, left2.s7, w0.s0, w0.s1, w0.s2, w1.s0, values1.s7);
- ARM_DOT(middle2.s7, right2.s7, left3.s7, middle3.s7, w1.s1, w1.s2, w2.s0, w2.s1, values1.s7);
+ ARM_DOT((uchar4)(left1.s7, middle1.s7, right1.s7, left2.s7), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s7);
+ ARM_DOT((uchar4)(middle2.s7, right2.s7, left3.s7, middle3.s7), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s7);
values1.s7 += right3.s7 * w2.s2;
#endif // CONV_STRIDE_Y == 1
@@ -494,7 +511,16 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nchw(
#endif /* CONV_STRIDE_Y == 1 */
#endif /* K_OFFSET != 0 */
+#if defined(REAL_MULTIPLIER)
+
+ values0 = CONVERT(round(CONVERT(values0, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+
+#endif // defined(REAL_MULTIPLIER)
+
values0 += (int8)OUTPUT_OFFSET;
uchar8 res0 = convert_uchar8_sat(values0);
res0 = max(res0, (uchar8)0);
@@ -503,7 +529,16 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nchw(
vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
#if CONV_STRIDE_Y == 1
+#if defined(REAL_MULTIPLIER)
+
+ values1 = CONVERT(round(CONVERT(values1, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+
+#endif // defined(REAL_MULTIPLIER)
+
values1 += (int8)OUTPUT_OFFSET;
uchar8 res1 = convert_uchar8_sat(values1);
res1 = max(res1, (uchar8)0);
@@ -522,6 +557,7 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nchw(
#define asymm_mult_by_quant_multiplier_less_than_one(x, y, z) ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, y, z, VEC_SIZE)
#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
+#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
#define VEC_UCHAR VEC_DATA_TYPE(uchar, VEC_SIZE)
#define VEC_USHORT VEC_DATA_TYPE(ushort, VEC_SIZE)
@@ -540,33 +576,62 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nchw(
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#define DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) \
({ \
- ARM_DOT(val0.s0, val1.s0, val2.s0, val3.s0, w0.s0, w1.s0, w2.s0, w3.s0, acc.s0); \
- ARM_DOT(val4.s0, val5.s0, val6.s0, val7.s0, w4.s0, w5.s0, w6.s0, w7.s0, acc.s0); \
+ ARM_DOT((uchar4)(val0.s0, val1.s0, val2.s0, val3.s0), (uchar4)(w0.s0, w1.s0, w2.s0, w3.s0), acc.s0); \
+ ARM_DOT((uchar4)(val4.s0, val5.s0, val6.s0, val7.s0), (uchar4)(w4.s0, w5.s0, w6.s0, w7.s0), acc.s0); \
acc.s0 += val8.s0 * w8.s0; \
\
- ARM_DOT(val0.s1, val1.s1, val2.s1, val3.s1, w0.s1, w1.s1, w2.s1, w3.s1, acc.s1); \
- ARM_DOT(val4.s1, val5.s1, val6.s1, val7.s1, w4.s1, w5.s1, w6.s1, w7.s1, acc.s1); \
+ ARM_DOT((uchar4)(val0.s1, val1.s1, val2.s1, val3.s1), (uchar4)(w0.s1, w1.s1, w2.s1, w3.s1), acc.s1); \
+ ARM_DOT((uchar4)(val4.s1, val5.s1, val6.s1, val7.s1), (uchar4)(w4.s1, w5.s1, w6.s1, w7.s1), acc.s1); \
acc.s1 += val8.s1 * w8.s1; \
\
- ARM_DOT(val0.s2, val1.s2, val2.s2, val3.s2, w0.s2, w1.s2, w2.s2, w3.s2, acc.s2); \
- ARM_DOT(val4.s2, val5.s2, val6.s2, val7.s2, w4.s2, w5.s2, w6.s2, w7.s2, acc.s2); \
+ ARM_DOT((uchar4)(val0.s2, val1.s2, val2.s2, val3.s2), (uchar4)(w0.s2, w1.s2, w2.s2, w3.s2), acc.s2); \
+ ARM_DOT((uchar4)(val4.s2, val5.s2, val6.s2, val7.s2), (uchar4)(w4.s2, w5.s2, w6.s2, w7.s2), acc.s2); \
acc.s2 += val8.s2 * w8.s2; \
\
- ARM_DOT(val0.s3, val1.s3, val2.s3, val3.s3, w0.s3, w1.s3, w2.s3, w3.s3, acc.s3); \
- ARM_DOT(val4.s3, val5.s3, val6.s3, val7.s3, w4.s3, w5.s3, w6.s3, w7.s3, acc.s3); \
+ ARM_DOT((uchar4)(val0.s3, val1.s3, val2.s3, val3.s3), (uchar4)(w0.s3, w1.s3, w2.s3, w3.s3), acc.s3); \
+ ARM_DOT((uchar4)(val4.s3, val5.s3, val6.s3, val7.s3), (uchar4)(w4.s3, w5.s3, w6.s3, w7.s3), acc.s3); \
acc.s3 += val8.s3 * w8.s3; \
})
#if WEIGHTS_OFFSET != 0
-#define DOT_PRODUCT_ACCUMULATE(acc, sum, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) \
- ({ \
- sum += CONVERT(val0, VEC_INT) + CONVERT(val1, VEC_INT) + CONVERT(val2, VEC_INT) + CONVERT(val3, VEC_INT) + CONVERT(val4, VEC_INT) + CONVERT(val5, VEC_INT) + CONVERT(val6, VEC_INT) + CONVERT(val7, VEC_INT) + CONVERT(val8, VEC_INT); \
- DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8); \
+#define DOT_PRODUCT_ACCUMULATE(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) \
+ ({ \
+ ARM_DOT((uchar4)(w0.s0, w1.s0, w2.s0, w3.s0), (uchar4)(val0.s0, val1.s0, val2.s0, val3.s0), acc.s0); \
+ ARM_DOT((uchar4)(w4.s0, w5.s0, w6.s0, w7.s0), (uchar4)(val4.s0, val5.s0, val6.s0, val7.s0), acc.s0); \
+ ARM_DOT((uchar4)(w8.s0, 0, 0, 0), (uchar4)val8.s0, acc.s0); \
+ \
+ ARM_DOT((uchar4)(w0.s1, w1.s1, w2.s1, w3.s1), (uchar4)(val0.s1, val1.s1, val2.s1, val3.s1), acc.s1); \
+ ARM_DOT((uchar4)(w4.s1, w5.s1, w6.s1, w7.s1), (uchar4)(val4.s1, val5.s1, val6.s1, val7.s1), acc.s1); \
+ ARM_DOT((uchar4)(w8.s1, 0, 0, 0), (uchar4)val8.s1, acc.s1); \
+ \
+ ARM_DOT((uchar4)(w0.s2, w1.s2, w2.s2, w3.s2), (uchar4)(val0.s2, val1.s2, val2.s2, val3.s2), acc.s2); \
+ ARM_DOT((uchar4)(w4.s2, w5.s2, w6.s2, w7.s2), (uchar4)(val4.s2, val5.s2, val6.s2, val7.s2), acc.s2); \
+ ARM_DOT((uchar4)(w8.s2, 0, 0, 0), (uchar4)val8.s2, acc.s2); \
+ \
+ ARM_DOT((uchar4)(w0.s3, w1.s3, w2.s3, w3.s3), (uchar4)(val0.s3, val1.s3, val2.s3, val3.s3), acc.s3); \
+ ARM_DOT((uchar4)(w4.s3, w5.s3, w6.s3, w7.s3), (uchar4)(val4.s3, val5.s3, val6.s3, val7.s3), acc.s3); \
+ ARM_DOT((uchar4)(w8.s3, 0, 0, 0), (uchar4)val8.s3, acc.s3); \
})
#else /* WEIGHTS_OFFSET != 0 */
-#define DOT_PRODUCT_ACCUMULATE(acc, sum, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8)
+#define DOT_PRODUCT_ACCUMULATE(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8)
#endif /* WEIGHTS_OFFSET != 0 */
+#define DOT_PRODUCT_REDUCTION(sum, val0, val1, val2, val3, val4, val5, val6, val7, val8) \
+ ({ \
+ sum = CONVERT(val0, VEC_INT); \
+ ARM_DOT((uchar4)(val1.s0, val2.s0, val3.s0, val4.s0), (uchar4)1, sum.s0); \
+ ARM_DOT((uchar4)(val5.s0, val6.s0, val7.s0, val8.s0), (uchar4)1, sum.s0); \
+ \
+ ARM_DOT((uchar4)(val1.s1, val2.s1, val3.s1, val4.s1), (uchar4)1, sum.s1); \
+ ARM_DOT((uchar4)(val5.s1, val6.s1, val7.s1, val8.s1), (uchar4)1, sum.s1); \
+ \
+ ARM_DOT((uchar4)(val1.s2, val2.s2, val3.s2, val4.s2), (uchar4)1, sum.s2); \
+ ARM_DOT((uchar4)(val5.s2, val6.s2, val7.s2, val8.s2), (uchar4)1, sum.s2); \
+ \
+ ARM_DOT((uchar4)(val1.s3, val2.s3, val3.s3, val4.s3), (uchar4)1, sum.s3); \
+ ARM_DOT((uchar4)(val5.s3, val6.s3, val7.s3, val8.s3), (uchar4)1, sum.s3); \
+ })
+
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
@@ -626,11 +691,19 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc(
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
- int z_coord = 0;
- int4 offset = 0;
- const int4 y_offset = ((int4)(y * CONV_STRIDE_X) + (int4)(0, 1, 2, 3) - (int)CONV_PAD_LEFT) * (int4)src_stride_y;
+ int z_coord = 0;
+ int4 offset = 0;
+ int4 y_coord = ((int4)(y * CONV_STRIDE_X) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
- // We compute 2x1x1 [C,W,H] elements
+ // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
+ y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
+ y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
+ y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
+ y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
+
+ int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
+
+ // We compute 4x1x1 [C,W,H] elements
VEC_INT acc = 0, sum = 0;
// Load weights
@@ -712,7 +785,15 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc(
acc += (VEC_INT)K_OFFSET;
#endif /* K_OFFSET != 0 */
+#if defined(REAL_MULTIPLIER)
+
+ acc = CONVERT(round(CONVERT(acc, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+
+#else // defined(REAL_MULTIPLIER)
+
acc = asymm_mult_by_quant_multiplier_less_than_one(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
+#endif // defined(REAL_MULTIPLIER)
+
acc += (VEC_INT)OUTPUT_OFFSET;
VEC_UCHAR res = CONVERT_SAT(acc, VEC_UCHAR);
@@ -782,11 +863,19 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc_stride1(
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
- int z_coord = 0;
- int4 offset = 0;
- int4 y_offset = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3) - (int)CONV_PAD_LEFT) * (int4)src_stride_y;
+ int z_coord = 0;
+ int4 offset = 0;
+ int4 y_coord = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
+
+ // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
+ y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
+ y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
+ y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
+ y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
- // We compute 2x2x2 [C,W,H] elements
+ int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
+
+ // We compute 4x2x2 [C,W,H] elements
VEC_INT acc0 = 0, sum0 = 0;
VEC_INT acc1 = 0, sum1 = 0;
VEC_INT acc2 = 0, sum2 = 0;
@@ -930,11 +1019,22 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc_stride1(
acc3 += (VEC_INT)K_OFFSET;
#endif /* K_OFFSET != 0 */
+#if defined(REAL_MULTIPLIER)
+
+ acc0 = CONVERT(round(CONVERT(acc0, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+ acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+ acc2 = CONVERT(round(CONVERT(acc2, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+ acc3 = CONVERT(round(CONVERT(acc3, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+
+#else // defined(REAL_MULTIPLIER)
+
acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
acc2 = asymm_mult_by_quant_multiplier_less_than_one(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
acc3 = asymm_mult_by_quant_multiplier_less_than_one(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
+#endif // defined(REAL_MULTIPLIER)
+
acc0 += (VEC_INT)OUTPUT_OFFSET;
acc1 += (VEC_INT)OUTPUT_OFFSET;
acc2 += (VEC_INT)OUTPUT_OFFSET;
@@ -977,6 +1077,8 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc_stride1(
* @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1).
+ * @note If REAL_MULTIPLIER is passed at compile time (i.e. -DREAL_MULTIPLIER=1.355f), the final quantization is performed using a floating point multiplication.
+ * If not, the quantization will be performed using a fixed point multiplication
*
* @param[in] src_ptr Pointer to the source image. Supported data types: QASYMM8
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
@@ -1006,6 +1108,7 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc_stride1(
* @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
+ * @param[in] max_offset The maximum allowed offset for the input tensor
*/
__kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
@@ -1014,7 +1117,7 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
TENSOR3D_DECLARATION(weights),
#if defined(HAS_BIAS)
VECTOR_DECLARATION(biases),
-#endif /* defined(HAS_BIAS) */
+#endif // defined(HAS_BIAS)
int max_offset)
{
int x = get_global_id(0);
@@ -1025,15 +1128,23 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
- int z_coord = 0;
- int4 offset = 0;
- int4 y_offset = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3) - (int)CONV_PAD_LEFT) * (int4)src_stride_y;
+ int z_coord = 0;
+ int4 offset = 0;
+ int4 y_coord = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
- // We compute 2x2x2 [C,W,H] elements
- VEC_INT acc0 = 0, sum0 = 0;
- VEC_INT acc1 = 0, sum1 = 0;
- VEC_INT acc2 = 0, sum2 = 0;
- VEC_INT acc3 = 0, sum3 = 0;
+ // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
+ y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
+ y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
+ y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
+ y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
+
+ int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
+
+ // We compute 4x2x1 [C,W,H] elements
+ VEC_INT acc0 = 0;
+ VEC_INT acc1 = 0;
+ VEC_INT sum0 = 0;
+ VEC_INT sum1 = 0;
// Load weights
VEC_UCHAR w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z);
@@ -1047,17 +1158,21 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
VEC_UCHAR w8 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z);
#if INPUT_OFFSET != 0
- VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
- + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT)
- + CONVERT(w6, VEC_INT) + CONVERT(w7, VEC_INT) + CONVERT(w8, VEC_INT);
-#endif /* INPUT_OFFSET != 0 */
+ // Initilize the final result with the weights reduction multiplied by INPUT_OFFSET
+ DOT_PRODUCT_REDUCTION(acc0, w0, w1, w2, w3, w4, w5, w6, w7, w8);
+
+ // Multiply the weights reduction with INPUT_OFFSET
+ acc0 = INPUT_OFFSET * acc0;
+
+ acc1 = acc0;
+#endif // INPUT_OFFSET != 0
// Load input values
// z == 0
// Clamp z_coord as for z = 0, it can be negative
// z_coord is casted to unsigned int in order to use just a min() operation
// A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP;
+ z_coord = z - (int)CONV_PAD_TOP;
z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
offset = y_offset + (int4)(z_coord * src_stride_z);
offset = min(offset, (int4)max_offset);
@@ -1070,7 +1185,7 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
// z == 1
// z_coord can be only negative for z = 0 so we do not need to clamp it
// Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
+ z_coord = z - (int)CONV_PAD_TOP + 1;
offset = y_offset + (int4)(z_coord * src_stride_z);
VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
@@ -1087,20 +1202,11 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
VEC_UCHAR values10 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
VEC_UCHAR values11 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
- // z == 3
- // After z = 1 we can simply add src_stride_z to offset without updating z_coord
- // However offset can be out-of-bound so we need to check if it is greater than max_offset
- offset += (int4)(src_stride_z);
- offset = min(offset, (int4)max_offset);
- VEC_UCHAR values12 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
- VEC_UCHAR values13 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
- VEC_UCHAR values14 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
- VEC_UCHAR values15 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+ DOT_PRODUCT_REDUCTION(sum0, values0, values1, values2, values4, values5, values6, values8, values9, values10);
+ DOT_PRODUCT_ACCUMULATE(acc0, values0, values1, values2, values4, values5, values6, values8, values9, values10, w0, w1, w2, w3, w4, w5, w6, w7, w8);
- DOT_PRODUCT_ACCUMULATE(acc0, sum0, values0, values1, values2, values4, values5, values6, values8, values9, values10, w0, w1, w2, w3, w4, w5, w6, w7, w8);
- DOT_PRODUCT_ACCUMULATE(acc1, sum1, values1, values2, values3, values5, values6, values7, values9, values10, values11, w0, w1, w2, w3, w4, w5, w6, w7, w8);
- DOT_PRODUCT_ACCUMULATE(acc2, sum2, values4, values5, values6, values8, values9, values10, values12, values13, values14, w0, w1, w2, w3, w4, w5, w6, w7, w8);
- DOT_PRODUCT_ACCUMULATE(acc3, sum3, values5, values6, values7, values9, values10, values11, values13, values14, values15, w0, w1, w2, w3, w4, w5, w6, w7, w8);
+ DOT_PRODUCT_REDUCTION(sum1, values1, values2, values3, values5, values6, values7, values9, values10, values11);
+ DOT_PRODUCT_ACCUMULATE(acc1, values1, values2, values3, values5, values6, values7, values9, values10, values11, w0, w1, w2, w3, w4, w5, w6, w7, w8);
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
@@ -1109,74 +1215,52 @@ __kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1(
acc0 += bias_values;
acc1 += bias_values;
- acc2 += bias_values;
- acc3 += bias_values;
-#endif /* defined(HAS_BIAS) */
+
+#endif // defined(HAS_BIAS)
#if WEIGHTS_OFFSET != 0
acc0 += WEIGHTS_OFFSET * sum0;
acc1 += WEIGHTS_OFFSET * sum1;
- acc2 += WEIGHTS_OFFSET * sum2;
- acc3 += WEIGHTS_OFFSET * sum3;
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- VEC_INT offs = INPUT_OFFSET * sum_we;
-
- acc0 += offs;
- acc1 += offs;
- acc2 += offs;
- acc3 += offs;
-#endif /* INPUT_OFFSET != 0 */
+#endif // WEIGHTS_OFFSET != 0
#if K_OFFSET != 0
acc0 += (VEC_INT)K_OFFSET;
acc1 += (VEC_INT)K_OFFSET;
- acc2 += (VEC_INT)K_OFFSET;
- acc3 += (VEC_INT)K_OFFSET;
-#endif /* K_OFFSET != 0 */
+
+#endif // K_OFFSET != 0
+
+#if defined(REAL_MULTIPLIER)
+
+ acc0 = CONVERT(round(CONVERT(acc0, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+ acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
+
+#else // defined(REAL_MULTIPLIER)
acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc2 = asymm_mult_by_quant_multiplier_less_than_one(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc3 = asymm_mult_by_quant_multiplier_less_than_one(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
+#endif // defined(REAL_MULTIPLIER)
acc0 += (VEC_INT)OUTPUT_OFFSET;
acc1 += (VEC_INT)OUTPUT_OFFSET;
- acc2 += (VEC_INT)OUTPUT_OFFSET;
- acc3 += (VEC_INT)OUTPUT_OFFSET;
VEC_UCHAR res0 = CONVERT_SAT(acc0, VEC_UCHAR);
VEC_UCHAR res1 = CONVERT_SAT(acc1, VEC_UCHAR);
- VEC_UCHAR res2 = CONVERT_SAT(acc2, VEC_UCHAR);
- VEC_UCHAR res3 = CONVERT_SAT(acc3, VEC_UCHAR);
res0 = CLAMP(res0, (VEC_UCHAR)0, (VEC_UCHAR)255);
res1 = CLAMP(res1, (VEC_UCHAR)0, (VEC_UCHAR)255);
- res2 = CLAMP(res2, (VEC_UCHAR)0, (VEC_UCHAR)255);
- res3 = CLAMP(res3, (VEC_UCHAR)0, (VEC_UCHAR)255);
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z;
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
VSTORE(VEC_SIZE)
(ACTIVATION_FUNC(res0), 0, dst_addr + 0 * dst_stride_y);
VSTORE(VEC_SIZE)
(ACTIVATION_FUNC(res1), 0, dst_addr + 1 * dst_stride_y);
-
-#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2)
-#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- {
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res2), 0, dst_addr + 0 * dst_stride_y + 1 * dst_stride_z);
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res3), 0, dst_addr + 1 * dst_stride_y + 1 * dst_stride_z);
- }
}
+
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#endif // defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
#endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
-#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)
+#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index 932e0d681a..d24f014f11 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -84,7 +84,8 @@ __kernel void gemm_transpose1xW(TENSOR3D_DECLARATION(src),
#if defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(DATA_TYPE)
-/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
+/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block. If -DUNROLL_BLOCK is passed at compile time, the 4x4 block
+ * will be simply unrolled.
*
* @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
@@ -187,6 +188,12 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
a3 = vload4(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
#endif // defined(REINTERPRET_INPUT_AS_3D)
+#if defined(UNROLL_BLOCK)
+ vstore4(a0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 0 * MULT_INTERLEAVE4X4_HEIGHT));
+ vstore4(a1, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 4 * MULT_INTERLEAVE4X4_HEIGHT));
+ vstore4(a2, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 8 * MULT_INTERLEAVE4X4_HEIGHT));
+ vstore4(a3, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 12 * MULT_INTERLEAVE4X4_HEIGHT));
+#else // defined(UNROLL_BLOCK)
VEC_DATA_TYPE(DATA_TYPE, 4)
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s0, a1.s0, a2.s0, a3.s0);
vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 0 * MULT_INTERLEAVE4X4_HEIGHT));
@@ -199,6 +206,7 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s3, a1.s3, a2.s3, a3.s3);
vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 12 * MULT_INTERLEAVE4X4_HEIGHT));
+#endif // defined(UNROLL_BLOCK)
}
#endif // defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(DATA_TYPE)
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index 80b5d00cf2..35e0d9dba5 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -26,9 +26,9 @@
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val = arm_dot_acc((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3), val);
+#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), (val));
#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val += arm_dot((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3));
+#define ARM_DOT(x, y, val) val += arm_dot((x), (y));
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
@@ -600,29 +600,22 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
#endif // REINTERPRET_OUTPUT_AS_3D
)
{
- const int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
- const int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- const int z = get_global_id(2);
-
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
- __global uchar *src_addr_a = (__global uchar *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
- __global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
+ __global uchar *src_addr_a = (__global uchar *)(src0_ptr + (get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT) * src0_stride_y + get_global_id(2) * src0_stride_z + src0_offset_first_element_in_bytes);
+ __global uchar *src_addr_b = (__global uchar *)(src1_ptr + (get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP) * src1_stride_y + src1_offset_first_element_in_bytes);
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr_b += (z % MATRIX_B_DEPTH) * src1_stride_z;
+ src_addr_b += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
#else // defined(MATRIX_B_DEPTH)
- src_addr_b += z * src1_stride_z;
+ src_addr_b += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
- // Compute end row address for matrix B
- __global uchar *src_end_addr_b = src_addr_b + COLS_B;
-
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
@@ -631,21 +624,27 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
uint c01 = 0;
uint c02 = 0;
uint c03 = 0;
+
uint c10 = 0;
uint c11 = 0;
uint c12 = 0;
uint c13 = 0;
+
uint c20 = 0;
uint c21 = 0;
uint c22 = 0;
uint c23 = 0;
+
uint c30 = 0;
uint c31 = 0;
uint c32 = 0;
uint c33 = 0;
+#define COLS_MTX_B (COLS_B / (16 * MULT_TRANSPOSE1XW_WIDTH))
+
#if MULT_INTERLEAVE4X4_HEIGHT == 1
- for(; src_addr_b <= (src_end_addr_b - (int)(32 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += (32 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (32 * TRANSPOSE1XW_WIDTH_STEP))
+ int i = 0;
+ for(; i <= (int)(COLS_MTX_B - 8); i += 8)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
uchar16 a0 = vload16(0, src_addr_a);
@@ -653,83 +652,88 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
uchar4 b1 = vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP);
uchar4 b2 = vload4(0, src_addr_b + 8 * TRANSPOSE1XW_WIDTH_STEP);
uchar4 b3 = vload4(0, src_addr_b + 12 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b4 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b5 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b6 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
+ uchar4 b7 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
// Accumulate
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s0, b1.s0, b2.s0, b3.s0, c00);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s1, b1.s1, b2.s1, b3.s1, c01);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s2, b1.s2, b2.s2, b3.s2, c02);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s3, b1.s3, b2.s3, b3.s3, c03);
-
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s0, b1.s0, b2.s0, b3.s0, c10);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s1, b1.s1, b2.s1, b3.s1, c11);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s2, b1.s2, b2.s2, b3.s2, c12);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s3, b1.s3, b2.s3, b3.s3, c13);
-
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s0, b1.s0, b2.s0, b3.s0, c20);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s1, b1.s1, b2.s1, b3.s1, c21);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s2, b1.s2, b2.s2, b3.s2, c22);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s3, b1.s3, b2.s3, b3.s3, c23);
-
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s0, b1.s0, b2.s0, b3.s0, c30);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s1, b1.s1, b2.s1, b3.s1, c31);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s2, b1.s2, b2.s2, b3.s2, c32);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s3, b1.s3, b2.s3, b3.s3, c33);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload16(0, src_addr_a + 16);
- b0 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
- b1 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
- b2 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
- b3 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c00);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c01);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c02);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c03);
+
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c10);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c11);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c12);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c13);
+
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c20);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c21);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c22);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c23);
+
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), c30);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), c31);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), c32);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), c33);
// Accumulate
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s0, b1.s0, b2.s0, b3.s0, c00);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s1, b1.s1, b2.s1, b3.s1, c01);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s2, b1.s2, b2.s2, b3.s2, c02);
- ARM_DOT(a0.s0, a0.s4, a0.s8, a0.sC, b0.s3, b1.s3, b2.s3, b3.s3, c03);
-
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s0, b1.s0, b2.s0, b3.s0, c10);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s1, b1.s1, b2.s1, b3.s1, c11);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s2, b1.s2, b2.s2, b3.s2, c12);
- ARM_DOT(a0.s1, a0.s5, a0.s9, a0.sD, b0.s3, b1.s3, b2.s3, b3.s3, c13);
-
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s0, b1.s0, b2.s0, b3.s0, c20);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s1, b1.s1, b2.s1, b3.s1, c21);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s2, b1.s2, b2.s2, b3.s2, c22);
- ARM_DOT(a0.s2, a0.s6, a0.sA, a0.sE, b0.s3, b1.s3, b2.s3, b3.s3, c23);
-
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s0, b1.s0, b2.s0, b3.s0, c30);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s1, b1.s1, b2.s1, b3.s1, c31);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s2, b1.s2, b2.s2, b3.s2, c32);
- ARM_DOT(a0.s3, a0.s7, a0.sB, a0.sF, b0.s3, b1.s3, b2.s3, b3.s3, c33);
- }
-#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
+ a0 = vload16(0, src_addr_a + 16);
- for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- uchar4 a0 = vload4(0, src_addr_a);
- uchar4 b0 = vload4(0, src_addr_b);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c00);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c01);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c02);
+ ARM_DOT((uchar4)(a0.s0123), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c03);
- c00 += (ushort)a0.s0 * b0.s0;
- c01 += (ushort)a0.s0 * b0.s1;
- c02 += (ushort)a0.s0 * b0.s2;
- c03 += (ushort)a0.s0 * b0.s3;
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c10);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c11);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c12);
+ ARM_DOT((uchar4)(a0.s4567), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c13);
- c10 += (ushort)a0.s1 * b0.s0;
- c11 += (ushort)a0.s1 * b0.s1;
- c12 += (ushort)a0.s1 * b0.s2;
- c13 += (ushort)a0.s1 * b0.s3;
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c20);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c21);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c22);
+ ARM_DOT((uchar4)(a0.s89AB), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c23);
- c20 += (ushort)a0.s2 * b0.s0;
- c21 += (ushort)a0.s2 * b0.s1;
- c22 += (ushort)a0.s2 * b0.s2;
- c23 += (ushort)a0.s2 * b0.s3;
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s0, b5.s0, b6.s0, b7.s0), c30);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s1, b5.s1, b6.s1, b7.s1), c31);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s2, b5.s2, b6.s2, b7.s2), c32);
+ ARM_DOT((uchar4)(a0.sCDEF), (uchar4)(b4.s3, b5.s3, b6.s3, b7.s3), c33);
- c30 += (ushort)a0.s3 * b0.s0;
- c31 += (ushort)a0.s3 * b0.s1;
- c32 += (ushort)a0.s3 * b0.s2;
- c33 += (ushort)a0.s3 * b0.s3;
+ src_addr_a += 32;
+ src_addr_b += 32 * TRANSPOSE1XW_WIDTH_STEP;
+ }
+#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
+ int i_left_over = 0;
+ for(; i < (int)(COLS_MTX_B); ++i)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ uchar16 a0 = vload16(0, src_addr_a + (i_left_over % 4) + ((i_left_over / 4) * 16));
+ uchar4 b0 = vload4(0, src_addr_b);
+
+ c00 += a0.s0 * b0.s0;
+ c01 += a0.s0 * b0.s1;
+ c02 += a0.s0 * b0.s2;
+ c03 += a0.s0 * b0.s3;
+
+ c10 += a0.s4 * b0.s0;
+ c11 += a0.s4 * b0.s1;
+ c12 += a0.s4 * b0.s2;
+ c13 += a0.s4 * b0.s3;
+
+ c20 += a0.s8 * b0.s0;
+ c21 += a0.s8 * b0.s1;
+ c22 += a0.s8 * b0.s2;
+ c23 += a0.s8 * b0.s3;
+
+ c30 += a0.sC * b0.s0;
+ c31 += a0.sC * b0.s1;
+ c32 += a0.sC * b0.s2;
+ c33 += a0.sC * b0.s3;
+
+ i_left_over++;
+ src_addr_b += 4 * TRANSPOSE1XW_WIDTH_STEP;
}
// Compute destination address
@@ -760,7 +764,7 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
- dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
+ dst.ptr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
@@ -770,7 +774,7 @@ __kernel void gemmlowp_mm_interleaved_transposed_bifrost_dot8(IMAGE_DECLARATION(
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
- dst.ptr += z * dst_stride_z;
+ dst.ptr += get_global_id(2) * dst_stride_z;
// Store 4x4 block
vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
@@ -1605,6 +1609,8 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
// Add offset due to the cross plane paddings
zin *= (src_cross_plane_pad * src0_stride_y);
+ zin += ((uint4)(0, 1, 2, 3)) * src0_stride_y;
+
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply src0_stride_z by DEPTH_GEMM3D
src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
@@ -1623,199 +1629,635 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
src_addr.s1 += get_global_id(2) * src1_stride_z;
#endif // defined(MATRIX_B_DEPTH)
- int end_row_vec_a = src_addr.s0 + COLS_A;
-
uint acc00 = 0;
uint acc01 = 0;
uint acc02 = 0;
uint acc03 = 0;
+ uint acc04 = 0;
+ uint acc05 = 0;
+ uint acc06 = 0;
+ uint acc07 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
uint acc10 = 0;
uint acc11 = 0;
uint acc12 = 0;
uint acc13 = 0;
+ uint acc14 = 0;
+ uint acc15 = 0;
+ uint acc16 = 0;
+ uint acc17 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
uint acc20 = 0;
uint acc21 = 0;
uint acc22 = 0;
uint acc23 = 0;
+ uint acc24 = 0;
+ uint acc25 = 0;
+ uint acc26 = 0;
+ uint acc27 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uint acc30 = 0;
uint acc31 = 0;
uint acc32 = 0;
uint acc33 = 0;
+ uint acc34 = 0;
+ uint acc35 = 0;
+ uint acc36 = 0;
+ uint acc37 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uint acc40 = 0;
- uint acc41 = 0;
- uint acc42 = 0;
- uint acc43 = 0;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- for(; src_addr.s0 <= (end_row_vec_a - 4); src_addr += (int2)(4, 4 * src1_stride_y))
+ // A and B src indices get incremented at the same time.
+ int i = 0;
+ for(; i <= ((int)COLS_A - 8); i += 8)
{
- // Load values from matrix A
- uchar4 a0 = vload4(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- uchar4 a1 = vload4(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- uchar4 a2 = vload4(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uchar4 a3 = vload4(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uchar4 a4 = vload4(0, src0_ptr + src_addr.s0 + 4 * src0_stride_y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- // Load values from matrix B
- uchar4 b0 = vload4(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
- uchar4 b1 = vload4(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
- uchar4 b2 = vload4(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
- uchar4 b3 = vload4(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ uchar8 b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ uchar8 b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ uchar8 b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a0.s0, a0.s1, a0.s2, a0.s3, acc00);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a0.s0, a0.s1, a0.s2, a0.s3, acc01);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a0.s0, a0.s1, a0.s2, a0.s3, acc02);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a0.s0, a0.s1, a0.s2, a0.s3, acc03);
- }
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a1.s0, a1.s1, a1.s2, a1.s3, acc10);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a1.s0, a1.s1, a1.s2, a1.s3, acc11);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a1.s0, a1.s1, a1.s2, a1.s3, acc12);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a1.s0, a1.s1, a1.s2, a1.s3, acc13);
- }
+ ARM_DOT(a1.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a2.s0, a2.s1, a2.s2, a2.s3, acc20);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a2.s0, a2.s1, a2.s2, a2.s3, acc21);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a2.s0, a2.s1, a2.s2, a2.s3, acc22);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a2.s0, a2.s1, a2.s2, a2.s3, acc23);
- }
+ ARM_DOT(a2.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a3.s0, a3.s1, a3.s2, a3.s3, acc30);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a3.s0, a3.s1, a3.s2, a3.s3, acc31);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a3.s0, a3.s1, a3.s2, a3.s3, acc32);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a3.s0, a3.s1, a3.s2, a3.s3, acc33);
- }
+ ARM_DOT(a3.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- {
- // Accumulate
- ARM_DOT(b0.s0, b1.s0, b2.s0, b3.s0, a4.s0, a4.s1, a4.s2, a4.s3, acc40);
- ARM_DOT(b0.s1, b1.s1, b2.s1, b3.s1, a4.s0, a4.s1, a4.s2, a4.s3, acc41);
- ARM_DOT(b0.s2, b1.s2, b2.s2, b3.s2, a4.s0, a4.s1, a4.s2, a4.s3, acc42);
- ARM_DOT(b0.s3, b1.s3, b2.s3, b3.s3, a4.s0, a4.s1, a4.s2, a4.s3, acc43);
- }
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
+
+ b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT(a1.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT(a2.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT(a3.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 8;
}
- for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
+ for(; i < (int)COLS_A; ++i)
{
+#if defined(REINTERPRET_INPUT_AS_3D)
// Load values from matrix A
- uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uchar a4 = *(src0_ptr + src_addr.s0 + 4 * src0_stride_y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
// Load values from matrix B
- uchar4 b0 = vload4(0, src1_ptr + src_addr.s1);
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1);
+ src_addr.s1 += src1_stride_y;
+
+ acc00 += (uint)a0 * b0.s0;
+ acc01 += (uint)a0 * b0.s1;
+ acc02 += (uint)a0 * b0.s2;
+ acc03 += (uint)a0 * b0.s3;
+ acc04 += (uint)a0 * b0.s4;
+ acc05 += (uint)a0 * b0.s5;
+ acc06 += (uint)a0 * b0.s6;
+ acc07 += (uint)a0 * b0.s7;
- // Accumulate
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a0;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a0;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a0;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc10 += (uint)a1 * b0.s0;
+ acc11 += (uint)a1 * b0.s1;
+ acc12 += (uint)a1 * b0.s2;
+ acc13 += (uint)a1 * b0.s3;
+ acc14 += (uint)a1 * b0.s4;
+ acc15 += (uint)a1 * b0.s5;
+ acc16 += (uint)a1 * b0.s6;
+ acc17 += (uint)a1 * b0.s7;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc20 += (uint)a2 * b0.s0;
+ acc21 += (uint)a2 * b0.s1;
+ acc22 += (uint)a2 * b0.s2;
+ acc23 += (uint)a2 * b0.s3;
+ acc24 += (uint)a2 * b0.s4;
+ acc25 += (uint)a2 * b0.s5;
+ acc26 += (uint)a2 * b0.s6;
+ acc27 += (uint)a2 * b0.s7;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc30 += (uint)a3 * b0.s0;
+ acc31 += (uint)a3 * b0.s1;
+ acc32 += (uint)a3 * b0.s2;
+ acc33 += (uint)a3 * b0.s3;
+ acc34 += (uint)a3 * b0.s4;
+ acc35 += (uint)a3 * b0.s5;
+ acc36 += (uint)a3 * b0.s6;
+ acc37 += (uint)a3 * b0.s7;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc00 += ((uint)tmp0);
- acc01 += ((uint)tmp1);
- acc02 += ((uint)tmp2);
- acc03 += ((uint)tmp3);
- }
+ src_addr.s0 += 1;
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = dst.ptr;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+ // Store the result
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a1;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a1;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a1;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a1;
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc10 += ((uint)tmp0);
- acc11 += ((uint)tmp1);
- acc12 += ((uint)tmp2);
- acc13 += ((uint)tmp3);
- }
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+ // Store the result
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a2;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a2;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a2;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a2;
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+}
- acc20 += ((uint)tmp0);
- acc21 += ((uint)tmp1);
- acc22 += ((uint)tmp2);
- acc23 += ((uint)tmp3);
- }
+__kernel void gemmlowp_mm_bifrost_transposed_dot8(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D)
+ )
+{
+ int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx;
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ zin += ((uint4)(0, 1, 2, 3)) * src0_stride_y;
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ uint acc00 = 0;
+ uint acc01 = 0;
+ uint acc02 = 0;
+ uint acc03 = 0;
+ uint acc04 = 0;
+ uint acc05 = 0;
+ uint acc06 = 0;
+ uint acc07 = 0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uint acc10 = 0;
+ uint acc11 = 0;
+ uint acc12 = 0;
+ uint acc13 = 0;
+ uint acc14 = 0;
+ uint acc15 = 0;
+ uint acc16 = 0;
+ uint acc17 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uint acc20 = 0;
+ uint acc21 = 0;
+ uint acc22 = 0;
+ uint acc23 = 0;
+ uint acc24 = 0;
+ uint acc25 = 0;
+ uint acc26 = 0;
+ uint acc27 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a3;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a3;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a3;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a3;
+ uint acc30 = 0;
+ uint acc31 = 0;
+ uint acc32 = 0;
+ uint acc33 = 0;
+ uint acc34 = 0;
+ uint acc35 = 0;
+ uint acc36 = 0;
+ uint acc37 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc30 += ((uint)tmp0);
- acc31 += ((uint)tmp1);
- acc32 += ((uint)tmp2);
- acc33 += ((uint)tmp3);
- }
+ // A and B src indices get incremented at the same time.
+ int i = 0;
+ for(; i <= ((int)COLS_A - 8); i += 8)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- {
- // Accumulate
- ushort tmp0 = (ushort)b0.s0 * (ushort)a4;
- ushort tmp1 = (ushort)b0.s1 * (ushort)a4;
- ushort tmp2 = (ushort)b0.s2 * (ushort)a4;
- ushort tmp3 = (ushort)b0.s3 * (ushort)a4;
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ uchar8 a0 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar8 a1 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar8 a2 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar8 a3 = vload8(0, (__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc40 += ((uint)tmp0);
- acc41 += ((uint)tmp1);
- acc42 += ((uint)tmp2);
- acc43 += ((uint)tmp3);
- }
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ uchar8 b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ uchar8 b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ uchar8 b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT(a1.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT(a2.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT(a3.s0123, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s0123, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ b0 = vload8(0, src1_ptr + src_addr.s1 + 0 * src1_stride_y);
+ b1 = vload8(0, src1_ptr + src_addr.s1 + 1 * src1_stride_y);
+ b2 = vload8(0, src1_ptr + src_addr.s1 + 2 * src1_stride_y);
+ b3 = vload8(0, src1_ptr + src_addr.s1 + 3 * src1_stride_y);
+ src_addr.s1 += 4 * src1_stride_y;
+
+ ARM_DOT(a0.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc00);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc01);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc02);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc03);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc04);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc05);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc06);
+ ARM_DOT(a0.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT(a1.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc10);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc11);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc12);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc13);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc14);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc15);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc16);
+ ARM_DOT(a1.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT(a2.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc20);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc21);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc22);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc23);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc24);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc25);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc26);
+ ARM_DOT(a2.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT(a3.s4567, (uchar4)(b0.s0, b1.s0, b2.s0, b3.s0), acc30);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s1, b1.s1, b2.s1, b3.s1), acc31);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s2, b1.s2, b2.s2, b3.s2), acc32);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s3, b1.s3, b2.s3, b3.s3), acc33);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s4, b1.s4, b2.s4, b3.s4), acc34);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s5, b1.s5, b2.s5, b3.s5), acc35);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s6, b1.s6, b2.s6, b3.s6), acc36);
+ ARM_DOT(a3.s4567, (uchar4)(b0.s7, b1.s7, b2.s7, b3.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 8;
}
- const int z = get_global_id(2);
+ for(; i < (int)COLS_A; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ uchar a0 = *((__global uchar *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *((__global uchar *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *((__global uchar *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *((__global uchar *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ uchar8 b0 = vload8(0, src1_ptr + src_addr.s1);
+ src_addr.s1 += src1_stride_y;
+
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s0), acc00);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s1), acc01);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s2), acc02);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s3), acc03);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s4), acc04);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s5), acc05);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s6), acc06);
+ ARM_DOT((uchar4)(a0, 0, 0, 0), (uchar4)(b0.s7), acc07);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s0), acc10);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s1), acc11);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s2), acc12);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s3), acc13);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s4), acc14);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s5), acc15);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s6), acc16);
+ ARM_DOT((uchar4)(a1, 0, 0, 0), (uchar4)(b0.s7), acc17);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s0), acc20);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s1), acc21);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s2), acc22);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s3), acc23);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s4), acc24);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s5), acc25);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s6), acc26);
+ ARM_DOT((uchar4)(a2, 0, 0, 0), (uchar4)(b0.s7), acc27);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s0), acc30);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s1), acc31);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s2), acc32);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s3), acc33);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s4), acc34);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s5), acc35);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s6), acc36);
+ ARM_DOT((uchar4)(a3, 0, 0, 0), (uchar4)(b0.s7), acc37);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 1;
+ }
+
+ int z = get_global_id(2);
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ // Compute dst address
+ __global uchar *dst_addr = dst.ptr;
+
#if defined(REINTERPRET_OUTPUT_AS_3D)
// Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
// in order to take into account the presence of possible cross plane paddings
@@ -1833,7 +2275,7 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
// |__________________|
// The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint8 zout = ((uint8)(0, 1, 2, 3, 4, 5, 6, 7) + (uint8)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint8)HEIGHT_GEMM3D;
+ uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
zout = min(DEPTH_GEMM3D - 1, zout);
// Add offset due to the cross plane paddings
@@ -1841,41 +2283,43 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
- dst.ptr += z * dst_stride_z * DEPTH_GEMM3D;
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
// Store the result
- vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y + zout.s0));
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y + zout.s0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y + zout.s1));
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y + zout.s1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y + zout.s2));
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y + zout.s2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y + zout.s3));
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout.s3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y + zout.s4));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
- dst.ptr += z * dst_stride_z;
+ dst_addr += z * dst_stride_z;
// Store the result
- vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst.ptr + 0 * dst_stride_y));
+ vstore4((int4)(acc00, acc01, acc02, acc03), 0, (__global int *)(dst_addr + 0 * dst_stride_y));
+ vstore4((int4)(acc04, acc05, acc06, acc07), 1, (__global int *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst.ptr + 1 * dst_stride_y));
+ vstore4((int4)(acc10, acc11, acc12, acc13), 0, (__global int *)(dst_addr + 1 * dst_stride_y));
+ vstore4((int4)(acc14, acc15, acc16, acc17), 1, (__global int *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst.ptr + 2 * dst_stride_y));
+ vstore4((int4)(acc20, acc21, acc22, acc23), 0, (__global int *)(dst_addr + 2 * dst_stride_y));
+ vstore4((int4)(acc24, acc25, acc26, acc27), 1, (__global int *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst.ptr + 3 * dst_stride_y));
+ vstore4((int4)(acc30, acc31, acc32, acc33), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
+ vstore4((int4)(acc34, acc35, acc36, acc37), 0, (__global int *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- vstore4((int4)(acc40, acc41, acc42, acc43), 0, (__global int *)(dst.ptr + 4 * dst_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
}
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
@@ -1937,6 +2381,70 @@ __kernel void gemmlowp_matrix_a_reduction(TENSOR3D_DECLARATION(src),
*((__global int *)dst.ptr) = (int)sum_row;
}
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A using the arm dot product instruction
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_a_reduction_dot8(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ uint sum_row = 0;
+
+ __global const uchar *matrix_a = (__global const uchar *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
+
+ int i = 0;
+
+ // This for loop performs 16 accumulations
+ for(; i <= ((int)COLS_A - 32); i += 32)
+ {
+ uchar16 a0_u8 = vload16(0, matrix_a + i);
+
+ sum_row += arm_dot(a0_u8.s0123, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s4567, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s89AB, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.sCDEF, (uchar4)(1));
+
+ a0_u8 = vload16(1, matrix_a + i);
+
+ sum_row += arm_dot(a0_u8.s0123, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s4567, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.s89AB, (uchar4)(1));
+ sum_row += arm_dot(a0_u8.sCDEF, (uchar4)(1));
+ }
+
+ // This for loop performs the leftover accumulations
+ for(; i < COLS_A; ++i)
+ {
+ sum_row += matrix_a[i];
+ }
+
+ *((__global int *)dst.ptr) = (int)sum_row;
+}
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#endif // defined(COLS_A)
#if defined(COLS_B) && defined(ROWS_B)
@@ -2002,6 +2510,101 @@ __kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
#endif // defined(COLS_B) && defined(ROWS_B)
#if defined(K_OFFSET)
+
+/* Helper function used to calculate the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
+ * and calculates the offset contribution of matrix A and matrix B.
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * @param[in] x get_global_id(0) * 4
+ * @param[in] y get_global_id(1)
+ * @param[in] z get_global_id(2)
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ */
+inline int4 offset_contribution(
+ int x,
+ int y,
+ int z
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS)
+)
+{
+ int4 a_offset_s32 = (int4)0;
+ int4 b_offset_s32 = (int4)0;
+
+ int batch_id = z;
+#if defined(DEPTH_INPUT3D)
+ batch_id /= (int)DEPTH_INPUT3D;
+#endif // defined(DEPTH_INPUT3D)
+
+#if defined(A_OFFSET)
+ // Compute the offset contribution due to A_OFFSET
+ __global uchar *sum_col_addr = sum_col_ptr + sum_col_offset_first_element_in_bytes + x * sizeof(int);
+
+ // Compute the offset contribution due to A_OFFSET
+#if defined(SUM_COL_HAS_BATCHES)
+ a_offset_s32 = vload4(0, (__global int *)(sum_col_addr + batch_id * sum_col_stride_y));
+#else // defined(SUM_COL_HAS_BATCHES)
+ a_offset_s32 = vload4(0, (__global int *)sum_col_addr);
+#endif // defined(SUM_COL_HAS_BATCHES)
+
+ a_offset_s32 *= (int4)A_OFFSET;
+#endif // defined(A_OFFSET)
+
+#if defined(B_OFFSET)
+ // Compute the offset contribution due to A_OFFSET
+ __global uchar *sum_row_addr = sum_row_ptr + sum_row_offset_first_element_in_bytes + y * sizeof(int);
+
+ // Compute the offset contribution due to B_OFFSET
+#if defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 = (int4) * (((__global int *)(sum_row_addr + batch_id * sum_row_stride_y)) + (z % (int)DEPTH_INPUT3D) * (int)HEIGHT_INPUT3D);
+#else // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 = (int4) * (((__global int *)(sum_row_addr + batch_id * sum_row_stride_y)));
+#endif // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 *= (int4)B_OFFSET;
+#endif // defined(B_OFFSET)
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ int4 biases_values = vload4(0, (__global int *)bias_addr);
+ b_offset_s32 += (int4)biases_values;
+#endif // defined(ADD_BIAS)
+
+ return (int4)K_OFFSET + a_offset_s32 + b_offset_s32;
+}
+
/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel. The computation is performed in-place
*
* This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
@@ -2027,18 +2630,22 @@ __kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
* @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] sum_col_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
- * @param[in] sum_col_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] sum_col_step_x sum_col_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] sum_col_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] sum_col_step_y sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] sum_col_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] sum_row_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
- * @param[in] sum_row_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] sum_row_step_x sum_row_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] sum_row_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] sum_row_step_y sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] sum_row_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
*/
__kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
#if defined(A_OFFSET)
@@ -2049,56 +2656,348 @@ __kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
,
IMAGE_DECLARATION(sum_row)
#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS))
)
{
- Tensor3D mm_result = CONVERT_TO_TENSOR3D_STRUCT(mm_result);
-
+ const int x = get_global_id(0) * 4;
const int y = get_global_id(1);
const int z = get_global_id(2);
- int4 a_offset_s32 = (int4)0;
- int4 b_offset_s32 = (int4)0;
+ // Compute offset contribution
+ int4 offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
- int batch_id = z;
-#if defined(DEPTH_INPUT3D)
- batch_id /= (int)DEPTH_INPUT3D;
-#endif // defined(DEPTH_INPUT3D)
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+ int4 in_s32 = vload4(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // Store the result with the offset contribution
+ vstore4(in_s32, 0, (__global int *)mm_result_addr);
+}
+
+#if defined(RESULT_OFFSET) && defined(RESULT_MULTIPLIER) && defined(RESULT_SHIFT)
+/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel and it quantizes down to uint8.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel), adds to it the offset contribution of matrix A and matrix B and quantizes to uint8 through the output stage.
+ *
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * The result before the output stage is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * This result is quantized down to uint8 using the output stage. The output stage computes the following operations:
+ *
+ * -# Add offset terms to final result
+ * -# Multiply each entry of result by result_mult_int
+ * -# Add bias to final result (if -DADD_BIAS is passed at compile time)
+ * -# Shift the int32 accumulator by result_shift
+ * -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
+ * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_offset_contribution_quantize_down(TENSOR3D_DECLARATION(mm_result)
#if defined(A_OFFSET)
- Image sum_col = CONVERT_TO_IMAGE_STRUCT(sum_col);
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ ,
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ const int x = get_global_id(0) * 4;
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
- // Compute the offset contribution due to A_OFFSET
-#if defined(SUM_COL_HAS_BATCHES)
- a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr + batch_id * sum_col_stride_y));
-#else // defined(MATRIX_B_HAS_BATCHES)
- a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr));
-#endif // defined(MATRIX_B_HAS_BATCHES)
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
- a_offset_s32 *= (int4)A_OFFSET;
+ // Compute offset contribution
+ int4 offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
+
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+
+ int4 in_s32 = vload4(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // -------------- OUTPUT STAGE
+
+ // Add the offset terms to GEMM's result
+ in_s32 += (int4)RESULT_OFFSET;
+
+ // Multiply by result_mult_int and shift
+ in_s32 *= RESULT_MULTIPLIER;
+ in_s32 >>= RESULT_SHIFT;
+
+ uchar4 res = convert_uchar4_sat(in_s32);
+
+#if defined(MIN_BOUND)
+ res = max(res, (uchar4)MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res = min(res, (uchar4)MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ vstore4(res, 0, dst_addr);
+}
+
+/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel and it quantizes down to uint8.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel), adds to it the offset contribution of matrix A and matrix B and quantizes to uint8 through the output stage.
+ *
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * The result before the output stage is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * This result is quantized down to uint8 using the output stage. The output stage computes the following operations:
+ *
+ * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Round to nearest division by a power-of-two using result_shift
+ * -# Add offset to each result
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_offset_contribution_quantize_down_fixedpoint(TENSOR3D_DECLARATION(mm_result)
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
- Image sum_row = CONVERT_TO_IMAGE_STRUCT(sum_row);
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ ,
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ const int x = get_global_id(0) * 4;
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
- // Compute the offset contribution due to B_OFFSET
-#if defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
- b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + batch_id * sum_row_stride_y)) + (z % (int)DEPTH_INPUT3D) * (int)HEIGHT_INPUT3D + y);
-#else // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
- b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + batch_id * sum_row_stride_y)) + y);
-#endif // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
- b_offset_s32 *= (int4)B_OFFSET;
+ // Compute offset contribution
+ int4 offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
- const int4 offset_term_s32 = (int4)K_OFFSET + a_offset_s32 + b_offset_s32;
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
- int4 in_s32 = vload4(0, (__global int *)mm_result.ptr);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ int4 in_s32 = vload4(0, (__global int *)mm_result_addr);
// Add the offset terms to GEMM's result
in_s32 += offset_term_s32;
- // Store the result with the offset contribution
- vstore4(in_s32, 0, (__global int *)mm_result.ptr);
+ // -------------- OUTPUT STAGE
+
+ // Multiply by result_mult_int and shift
+ in_s32 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(in_s32, RESULT_MULTIPLIER, RESULT_SHIFT, 4);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += (int4)RESULT_OFFSET;
+
+ uchar4 res = convert_uchar4_sat(in_s32);
+
+#if defined(MIN_BOUND)
+ res = max(res, (uchar4)MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res = min(res, (uchar4)MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ vstore4(res, 0, dst_addr);
}
+#endif // defined(K_OFFSET) && defined(RESULT_OFFSET) && defined(RESULT_MULTIPLIER) && defined(RESULT_SHIFT)
#endif // defined(K_OFFSET)
#if defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
@@ -2128,10 +3027,10 @@ __kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
- * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
- * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2148,39 +3047,43 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
- Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
- Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
-#if defined(ADD_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-#endif // defined(ADD_BIAS)
+ int x = get_global_id(0) * 4;
+ int y = get_global_id(1);
+ int z = get_global_id(2);
- int16 input_values = vload16(0, (__global int *)src.ptr);
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
- // Add the offset terms to GEMM's result
- input_values += (int16)RESULT_OFFSET;
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ int4 input_values = vload4(0, (__global int *)src_addr);
#if defined(ADD_BIAS)
// Add bias
- const int16 biases_values = vload16(0, (__global int *)biases.ptr);
- input_values += (int16)biases_values;
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ int4 biases_values = vload4(0, (__global int *)bias_addr);
+ input_values += (int4)biases_values;
#endif // defined(ADD_BIAS)
+ // Add the offset terms to GEMM's result
+ input_values += (int4)RESULT_OFFSET;
+
// Multiply by result_mult_int and shift
input_values *= RESULT_MULT_INT;
input_values >>= RESULT_SHIFT;
- uchar16 res = convert_uchar16_sat(input_values);
+ uchar4 res = convert_uchar4_sat(input_values);
#if defined(MIN_BOUND)
- res = max(res, (uchar16)MIN_BOUND);
+ res = max(res, (uchar4)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
- res = min(res, (uchar16)MAX_BOUND);
+ res = min(res, (uchar4)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
- vstore16(res, 0, dst.ptr);
+ vstore4(res, 0, dst_addr);
}
#endif // defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
@@ -2197,7 +3100,7 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
* -# Clamp the value between the specified min and max bounds
* -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
*
- * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET_AFTER_SHIFT, -DRESULT_FIXEDPOINT_MULTIPLIER and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
@@ -2211,10 +3114,10 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
- * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
- * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
* @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
@@ -2222,58 +3125,50 @@ __kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] dst_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void gemmlowp_output_stage_quantize_down_fixedpoint(TENSOR3D_DECLARATION(src),
#if defined(ADD_BIAS)
VECTOR_DECLARATION(biases),
#endif // defined(ADD_BIAS)
-#if defined(DST_HEIGHT)
- TENSOR4D_DECLARATION(dst))
-#else // defined(DST_HEIGHT)
TENSOR3D_DECLARATION(dst))
-#endif // defined(DST_HEIGHT)
{
// Compute source and destination addresses
- Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
-#if defined(DST_HEIGHT)
- Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(dst, 1);
- dst.ptr += get_global_id(0) * dst_step_x + (get_global_id(1) % DST_HEIGHT) * dst_step_y + (get_global_id(1) / DST_HEIGHT) * dst_step_z + get_global_id(2) * dst_step_w;
-#else // defined(DST_HEIGHT)
- Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
-#endif // defined(DST_HEIGHT)
+ int x = get_global_id(0) * 4;
+ int y = get_global_id(1);
+ int z = get_global_id(2);
-#if defined(ADD_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-#endif // defined(ADD_BIAS)
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
- int16 input_values = vload16(0, (__global int *)src.ptr);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ int4 input_values = vload4(0, (__global int *)src_addr);
#if defined(ADD_BIAS)
// Add bias
- const int16 biases_values = vload16(0, (__global int *)biases.ptr);
- input_values += (int16)biases_values;
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ int4 biases_values = vload4(0, (__global int *)bias_addr);
+ input_values += (int4)biases_values;
#endif // defined(ADD_BIAS)
// Multiply by result_mult_int and shift
- input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, 16);
+ input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, 4);
// Add the offset terms to GEMM's result
- input_values += (int16)RESULT_OFFSET_AFTER_SHIFT;
+ input_values += (int4)RESULT_OFFSET_AFTER_SHIFT;
- uchar16 res = convert_uchar16_sat(input_values);
+ uchar4 res = convert_uchar4_sat(input_values);
#if defined(MIN_BOUND)
- res = max(res, (uchar16)MIN_BOUND);
+ res = max(res, (uchar4)MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
- res = min(res, (uchar16)MAX_BOUND);
+ res = min(res, (uchar4)MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
- vstore16(res, 0, dst.ptr);
+ vstore4(res, 0, dst_addr);
}
#endif // defined(RESULT_OFFSET_AFTER_SHIFT) && defined(RESULT_FIXEDPOINT_MULTIPLIER) && defined(RESULT_SHIFT)
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
index eb561faf77..19cc649c96 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
@@ -246,13 +246,12 @@ void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const ICLTensor *input,
int output_shift = 0;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
+ build_opts.add_option("-DREAL_MULTIPLIER=" + support::cpp11::to_string(multiplier));
build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-_input->info()->quantization_info().offset));
build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-_weights->info()->quantization_info().offset));
build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(_output->info()->quantization_info().offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * input->info()->quantization_info().offset * weights->info()->quantization_info().offset));
- build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
- build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
if(act_info.enabled())
{
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
index d3bed87037..93d96dad1b 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
@@ -159,8 +159,9 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const ICLTensor *input,
ARM_COMPUTE_ERROR_ON(conv_stride_x < 1 || conv_stride_x > 2);
ARM_COMPUTE_ERROR_ON(std::max(conv_info.pad_top(), conv_info.pad_bottom()) > 1);
- const bool is_qasymm = is_data_type_quantized_asymmetric(input->info()->data_type());
- const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
+ const bool is_qasymm = is_data_type_quantized_asymmetric(input->info()->data_type());
+ const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
+ const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
_input = input;
_output = output;
@@ -169,7 +170,14 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const ICLTensor *input,
_conv_stride_y = conv_info.stride().second;
_num_rows_processed_per_iteration = is_stride_1 ? 2 : 1;
_num_planes_processed_per_iteration = is_stride_1 ? 2 : 1;
- _border_size = BorderSize(conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
+
+ // If QASYMM8 and the 8 bit dot product is available, force _num_planes_processed_per_iteration to 1
+ if(is_dot8_supported && is_qasymm)
+ {
+ _num_planes_processed_per_iteration = 1;
+ }
+
+ _border_size = BorderSize(is_qasymm && is_stride_1 ? 0 : conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
const unsigned int num_elems_accessed_per_iteration = is_qasymm ? 4 : (8 / input->info()->element_size());
@@ -187,13 +195,12 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const ICLTensor *input,
int output_shift = 0;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
+ build_opts.add_option("-DREAL_MULTIPLIER=" + support::cpp11::to_string(multiplier));
build_opts.add_option("-DSRC_DIM_1=" + support::cpp11::to_string(_input->info()->dimension(1)));
build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-_input->info()->quantization_info().offset));
build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-_weights->info()->quantization_info().offset));
build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(_output->info()->quantization_info().offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * input->info()->quantization_info().offset * weights->info()->quantization_info().offset));
- build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
- build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
if(act_info.enabled())
{
@@ -240,9 +247,8 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const ICLTensor *input,
}
// Create kernel
- const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
- std::string kernel_name = std::string("depthwise_convolution_3x3") + (is_qasymm ? std::string("_quantized") + ((is_dot8_supported
- && is_stride_1 /* FIXME (COMPMID-1424) */) ? "_dot8" : "") : "") + "_nhwc" + (is_stride_1 ? "_stride1" : "");
+ std::string kernel_name = std::string("depthwise_convolution_3x3") + (is_qasymm ? std::string("_quantized") + ((is_dot8_supported
+ && is_stride_1) ? "_dot8" : "") : "") + "_nhwc" + (is_stride_1 ? "_stride1" : "");
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
diff --git a/src/core/CL/kernels/CLGEMMInterleave4x4Kernel.cpp b/src/core/CL/kernels/CLGEMMInterleave4x4Kernel.cpp
index ae54e77972..f333c1bff3 100644
--- a/src/core/CL/kernels/CLGEMMInterleave4x4Kernel.cpp
+++ b/src/core/CL/kernels/CLGEMMInterleave4x4Kernel.cpp
@@ -115,7 +115,7 @@ CLGEMMInterleave4x4Kernel::CLGEMMInterleave4x4Kernel()
{
}
-void CLGEMMInterleave4x4Kernel::configure(const ICLTensor *input, ICLTensor *output, int mult_interleave4x4_height, bool reinterpret_input_as_3d)
+void CLGEMMInterleave4x4Kernel::configure(const ICLTensor *input, ICLTensor *output, int mult_interleave4x4_height, bool reinterpret_input_as_3d, bool unroll_block)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
@@ -132,6 +132,7 @@ void CLGEMMInterleave4x4Kernel::configure(const ICLTensor *input, ICLTensor *out
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));
+ build_opts.add_option_if(unroll_block, "-DUNROLL_BLOCK");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(input->info()->dimension(1)));
build_opts.add_option_if(_reinterpret_input_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(input->info()->dimension(2)));
diff --git a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
index 99e184050e..73b1d41eb1 100644
--- a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
@@ -108,6 +108,7 @@ Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1,
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, bool is_interleaved_transposed,
const GEMMReshapeInfo &reshape_info, ElementsProcessed &num_elements_processed)
{
+ const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
@@ -126,7 +127,7 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITe
}
// Output tensor auto inizialitation if not yet initialized
- auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info)));
+ auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info)).set_data_type(DataType::S32));
TensorInfo tmp_info(*output);
@@ -173,8 +174,9 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITe
else
{
// Special case for 1xN, 2xN, 3xN and 4xN input0 tensor. num_elems_processed_per_iteration_x
- num_elems_processed_per_iteration_x = 4;
- num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 5);
+ // Note: if the dot product instruction is available, the 8x2 tile has to be used
+ num_elems_processed_per_iteration_x = is_dot8_supported ? 8 : 4;
+ num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), is_dot8_supported ? 2 : 4);
// Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
// The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
@@ -270,6 +272,7 @@ void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const IC
// the correct step which is calculated as (16 * mult_transpose1xW_width) / 4)
build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(input1->info()->dimension(0)));
+ build_opts.add_option("-DMULT_TRANSPOSE1XW_WIDTH=" + support::cpp11::to_string(mult_transpose1xW_width));
build_opts.add_option("-DTRANSPOSE1XW_WIDTH_STEP=" + support::cpp11::to_string(4 * mult_transpose1xW_width));
build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));
diff --git a/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp b/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp
index 3888353ee7..d348f2c06d 100644
--- a/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp
@@ -46,11 +46,18 @@ class Coordinates;
namespace
{
-Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
+Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
int32_t a_offset, int32_t b_offset)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+ if(bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
+ }
+
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
@@ -64,11 +71,11 @@ Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vecto
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if input is a 3D reinterpretation
- const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+ const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
- ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row != nullptr && vector_sum_row->dimension(0) != mm_result->dimension(1));
+ ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
TensorShape output_shape = mm_result->tensor_shape();
if(output_shape.num_dimensions() > 1)
@@ -96,7 +103,7 @@ Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vecto
return Status{};
}
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row,
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, ITensorInfo *bias,
int32_t a_offset, int32_t b_offset)
{
constexpr unsigned int num_elems_processed_per_iteration = 4;
@@ -119,28 +126,37 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result,
window_changed = window_changed || update_window_and_padding(win, vector_sum_row_access);
}
+ if(bias != nullptr)
+ {
+ AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->tensor_shape()[1]);
+ window_changed = window_changed || update_window_and_padding(win, bias_access);
+ }
+
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLGEMMLowpOffsetContributionKernel::CLGEMMLowpOffsetContributionKernel()
- : _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr)
+ : _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _bias(nullptr)
{
}
-void CLGEMMLowpOffsetContributionKernel::configure(ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset)
+void CLGEMMLowpOffsetContributionKernel::configure(ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, int32_t k, int32_t a_offset,
+ int32_t b_offset)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(),
vector_sum_col != nullptr ? vector_sum_col->info() : nullptr,
vector_sum_row != nullptr ? vector_sum_row->info() : nullptr,
+ bias != nullptr ? bias->info() : nullptr,
a_offset, b_offset)); // NOLINT
_vector_sum_col = vector_sum_col;
_vector_sum_row = vector_sum_row;
_mm_result = mm_result;
+ _bias = bias;
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d = vector_sum_row != nullptr
@@ -161,20 +177,24 @@ void CLGEMMLowpOffsetContributionKernel::configure(ICLTensor *mm_result, const I
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * k));
build_opts.add_option_if(reinterpret_as_3d, "-DHEIGHT_INPUT3D=" + support::cpp11::to_string(mm_result->info()->dimension(1)));
build_opts.add_option_if(reinterpret_as_3d, "-DDEPTH_INPUT3D=" + support::cpp11::to_string(mm_result->info()->dimension(2)));
+ build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
+
+ std::string kernel_name("gemmlowp_offset_contribution");
// Create kernel
- _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("gemmlowp_offset_contribution", build_opts.options()));
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Configure kernel window
auto win_config = validate_and_configure_window(mm_result->info(),
vector_sum_col != nullptr ? vector_sum_col->info() : nullptr,
vector_sum_row != nullptr ? vector_sum_row->info() : nullptr,
+ bias != nullptr ? bias->info() : nullptr,
a_offset, b_offset); // NOLINT
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// Set config_id for enabling LWS tuning
- _config_id = "gemmlowp_offset_contribution_";
+ _config_id = kernel_name + "_";
_config_id += support::cpp11::to_string(mm_result->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(mm_result->info()->dimension(1));
@@ -182,13 +202,14 @@ void CLGEMMLowpOffsetContributionKernel::configure(ICLTensor *mm_result, const I
_config_id += support::cpp11::to_string(mm_result->info()->dimension(2));
}
-Status CLGEMMLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
+Status CLGEMMLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
int32_t a_offset, int32_t b_offset)
{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, a_offset, b_offset));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(),
vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
+ bias != nullptr ? bias->clone().get() : nullptr,
a_offset, b_offset)
.first); // NOLINT
@@ -214,6 +235,10 @@ void CLGEMMLowpOffsetContributionKernel::run(const Window &window, cl::CommandQu
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ Window biases_slice = slice;
+ biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
+ biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
+
do
{
unsigned int idx = 0;
@@ -226,7 +251,11 @@ void CLGEMMLowpOffsetContributionKernel::run(const Window &window, cl::CommandQu
{
add_2D_tensor_argument(idx, _vector_sum_row, win_vector_sum_row);
}
- enqueue(queue, *this, slice);
+ if(_bias != nullptr)
+ {
+ add_1D_tensor_argument(idx, _bias, biases_slice);
+ }
+ enqueue(queue, *this, slice, lws_hint());
}
while(collapsed.slide_window_slice_3D(slice));
}
diff --git a/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp b/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp
new file mode 100644
index 0000000000..83af0c63eb
--- /dev/null
+++ b/src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp
@@ -0,0 +1,301 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h"
+
+#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "support/ToolchainSupport.h"
+
+#include <cstddef>
+#include <cstdint>
+
+using namespace arm_compute;
+
+namespace arm_compute
+{
+class Coordinates;
+} // namespace arm_compute
+
+namespace
+{
+Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
+ int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type == GEMMLowpOutputStageType::NONE);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias == nullptr && a_offset == 0 && b_offset == 0);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_max_bound > 255);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound < 0 || output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
+
+ if(bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
+ }
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if(a_offset != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
+ }
+
+ // If b_offset == 0, vector_sum_row can be a nullptr
+ if(b_offset != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+
+ // Validate input
+ ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
+ ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
+
+ TensorShape output_shape = mm_result->tensor_shape();
+ if(output_shape.num_dimensions() > 1)
+ {
+ const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
+
+ TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
+ vector_sum_row_shape.collapse_from(1);
+ output_shape.collapse_from(output_batch_idx);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
+ "mm_result tensor must have the same number of batches of output tensor");
+
+ if(a_offset != 0)
+ {
+ TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
+ vector_sum_col_shape.collapse_from(1);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
+ "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
+ }
+ }
+ }
+
+ if(output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output);
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, ITensorInfo *bias, ITensorInfo *output,
+ int32_t a_offset, int32_t b_offset)
+{
+ constexpr unsigned int num_elems_processed_per_iteration = 4;
+ bool window_changed = false;
+
+ // Auto initialize the output
+ auto_init_if_empty(*output, mm_result->clone()->set_data_type(DataType::QASYMM8));
+
+ // Configure kernel window
+ Window win = calculate_max_window(*mm_result, Steps(num_elems_processed_per_iteration));
+
+ AccessWindowHorizontal mm_result_access(mm_result, 0, num_elems_processed_per_iteration);
+ window_changed = window_changed || update_window_and_padding(win, mm_result_access);
+
+ AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
+ window_changed = window_changed || update_window_and_padding(win, output_access);
+
+ if(a_offset != 0)
+ {
+ AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration);
+ window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access);
+ }
+ if(b_offset != 0)
+ {
+ AccessWindowStatic vector_sum_row_access(vector_sum_row, 0, 0, vector_sum_row->dimension(0), 0); // NOLINT
+ window_changed = window_changed || update_window_and_padding(win, vector_sum_row_access);
+ }
+
+ if(bias != nullptr)
+ {
+ AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->tensor_shape()[1]);
+ window_changed = window_changed || update_window_and_padding(win, bias_access);
+ }
+
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_pair(err, win);
+}
+} // namespace
+
+CLGEMMLowpOffsetContributionOutputStageKernel::CLGEMMLowpOffsetContributionOutputStageKernel()
+ : _mm_result(nullptr), _vector_sum_col(nullptr), _vector_sum_row(nullptr), _bias(nullptr), _output(nullptr)
+{
+}
+
+void CLGEMMLowpOffsetContributionOutputStageKernel::configure(const ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, ICLTensor *output,
+ int32_t k, int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage)
+{
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(),
+ vector_sum_col != nullptr ? vector_sum_col->info() : nullptr,
+ vector_sum_row != nullptr ? vector_sum_row->info() : nullptr,
+ bias != nullptr ? bias->info() : nullptr,
+ output->info(),
+ a_offset, b_offset, output_stage)); // NOLINT
+
+ const int min = output_stage.gemmlowp_min_bound;
+ const int max = output_stage.gemmlowp_max_bound;
+
+ _vector_sum_col = vector_sum_col;
+ _vector_sum_row = vector_sum_row;
+ _mm_result = mm_result;
+ _bias = bias;
+ _output = output;
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d = vector_sum_row != nullptr
+ && mm_result->info()->num_dimensions() > 1
+ && mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
+
+ // Set the arguments to pass at compile time
+ CLBuildOptions build_opts;
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if(a_offset != 0)
+ {
+ build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset));
+ build_opts.add_option_if(vector_sum_col->info()->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES");
+ }
+ // If b_offset == 0, vector_sum_row can be a nullptr
+ build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset));
+ build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * k));
+ build_opts.add_option_if(reinterpret_as_3d, "-DHEIGHT_INPUT3D=" + support::cpp11::to_string(mm_result->info()->dimension(1)));
+ build_opts.add_option_if(reinterpret_as_3d, "-DDEPTH_INPUT3D=" + support::cpp11::to_string(mm_result->info()->dimension(2)));
+ build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
+ build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset));
+ build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multiplier));
+ build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shift));
+ build_opts.add_option_if((min != 0) && (min != max), "-DMIN_BOUND=" + support::cpp11::to_string(min));
+ build_opts.add_option_if((max != 255) && (min != max), "-DMAX_BOUND=" + support::cpp11::to_string(max));
+
+ std::string kernel_name("gemmlowp_offset_contribution");
+
+ // Fuse output stage
+ if(output_stage.type != GEMMLowpOutputStageType::NONE)
+ {
+ kernel_name += "_" + string_from_gemmlowp_output_stage(output_stage.type);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("GEMMLowpOutputStage can not be NONE!");
+ }
+
+ // Create kernel
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(mm_result->info(),
+ vector_sum_col != nullptr ? vector_sum_col->info() : nullptr,
+ vector_sum_row != nullptr ? vector_sum_row->info() : nullptr,
+ bias != nullptr ? bias->info() : nullptr,
+ output->info(),
+ a_offset, b_offset); // NOLINT
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+ ICLKernel::configure_internal(win_config.second);
+
+ // Set config_id for enabling LWS tuning
+ _config_id = kernel_name + "_";
+ _config_id += support::cpp11::to_string(mm_result->info()->dimension(0));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(mm_result->info()->dimension(1));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(mm_result->info()->dimension(2));
+}
+
+Status CLGEMMLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
+ const ITensorInfo *output,
+ int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(),
+ vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
+ vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
+ bias != nullptr ? bias->clone().get() : nullptr,
+ output->clone().get(),
+ a_offset, b_offset)
+ .first); // NOLINT
+
+ return Status{};
+}
+
+void CLGEMMLowpOffsetContributionOutputStageKernel::run(const Window &window, cl::CommandQueue &queue)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
+
+ Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
+ Window slice = collapsed.first_slice_window_3D();
+
+ // Set window for vector_sum_col
+ Window win_vector_sum_col = slice;
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ // Set window for vector_sum_row
+ Window win_vector_sum_row = slice;
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Window biases_slice = slice;
+ biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
+ biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
+
+ do
+ {
+ unsigned int idx = 0;
+ add_3D_tensor_argument(idx, _mm_result, slice);
+ if(_vector_sum_col != nullptr)
+ {
+ add_2D_tensor_argument(idx, _vector_sum_col, win_vector_sum_col);
+ }
+ if(_vector_sum_row != nullptr)
+ {
+ add_2D_tensor_argument(idx, _vector_sum_row, win_vector_sum_row);
+ }
+ if(_bias != nullptr)
+ {
+ add_1D_tensor_argument(idx, _bias, biases_slice);
+ }
+ add_3D_tensor_argument(idx, _output, slice);
+ enqueue(queue, *this, slice, lws_hint());
+ }
+ while(collapsed.slide_window_slice_3D(slice));
+}
diff --git a/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp b/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp
index d403d67173..38e0474dde 100644
--- a/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp
@@ -42,7 +42,7 @@ namespace arm_compute
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
- int min, int max, unsigned int output_3d_depth)
+ int min, int max)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(max > 255);
@@ -58,10 +58,8 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, con
if(output->total_size() != 0)
{
- const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_output_stage_shape(*input, output_3d_depth, true);
- const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
}
return Status{};
@@ -69,7 +67,7 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, con
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output)
{
- constexpr unsigned int num_elems_processed_per_iteration = 16;
+ constexpr unsigned int num_elems_processed_per_iteration = 4;
// Configure kernel window
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
@@ -103,15 +101,15 @@ class Coordinates;
} // namespace arm_compute
CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel()
- : _input(nullptr), _bias(nullptr), _output(nullptr), _reinterpret_as_3d(false)
+ : _input(nullptr), _bias(nullptr), _output(nullptr)
{
}
Status CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
- int min, int max, unsigned int output_3d_depth)
+ int min, int max)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max, output_3d_depth));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
(bias != nullptr) ? bias->clone().get() : nullptr,
output->clone().get())
@@ -122,22 +120,20 @@ Status CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(const
void CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift,
- int min, int max, unsigned int output_3d_depth)
+ int min, int max)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Output auto inizialitation if not yet initialized
- const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_output_stage_shape(*input->info(), output_3d_depth, true);
- auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(DataType::QASYMM8).set_tensor_shape(output_shape));
+ auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(DataType::QASYMM8));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info(),
- min, max, output_3d_depth));
+ min, max));
- _input = input;
- _bias = bias;
- _output = output;
- _reinterpret_as_3d = output_3d_depth > 1;
+ _input = input;
+ _bias = bias;
+ _output = output;
// Set the arguments to pass at compile time
CLBuildOptions build_opts;
@@ -147,7 +143,6 @@ void CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::configure(const
build_opts.add_option_if((min != 0) && (min != max), "-DMIN_BOUND=" + support::cpp11::to_string(min));
build_opts.add_option_if((max != 255) && (min != max), "-DMAX_BOUND=" + support::cpp11::to_string(max));
build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
- build_opts.add_option_if(_reinterpret_as_3d, "-DDST_HEIGHT=" + support::cpp11::to_string(input->info()->tensor_shape().y() / output_3d_depth));
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("gemmlowp_output_stage_quantize_down_fixedpoint", build_opts.options()));
@@ -177,32 +172,12 @@ void CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run(const Window
add_1D_tensor_argument(idx1, _bias, biases_slice);
}
- if(_reinterpret_as_3d)
+ do
{
- // Create output window
- Window window_out;
- window_out.use_tensor_dimensions(_output->info()->tensor_shape());
- Window collapsed_out = window_out.collapse_if_possible(window_out, 3);
- Window slice_out = collapsed.first_slice_window_4D();
-
- do
- {
- unsigned int idx = 0;
- add_3D_tensor_argument(idx, _input, slice);
- add_4D_tensor_argument(idx1, _output, slice_out);
- enqueue(queue, *this, slice);
- }
- while(collapsed.slide_window_slice_3D(slice) && collapsed_out.slide_window_slice_4D(slice_out));
- }
- else
- {
- do
- {
- unsigned int idx = 0;
- add_3D_tensor_argument(idx, _input, slice);
- add_3D_tensor_argument(idx1, _output, slice);
- enqueue(queue, *this, slice);
- }
- while(collapsed.slide_window_slice_3D(slice));
+ unsigned int idx = 0;
+ add_3D_tensor_argument(idx, _input, slice);
+ add_3D_tensor_argument(idx1, _output, slice);
+ enqueue(queue, *this, slice);
}
+ while(collapsed.slide_window_slice_3D(slice));
}
diff --git a/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp b/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
index 57891131c7..621bd2b54b 100644
--- a/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
@@ -63,7 +63,7 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, con
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output)
{
- constexpr unsigned int num_elems_processed_per_iteration = 16;
+ constexpr unsigned int num_elems_processed_per_iteration = 4;
// Configure kernel window
Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
diff --git a/src/core/CL/kernels/CLGEMMLowpReductionKernel.cpp b/src/core/CL/kernels/CLGEMMLowpReductionKernel.cpp
index 9cf5d1fb6a..225c358b20 100644
--- a/src/core/CL/kernels/CLGEMMLowpReductionKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpReductionKernel.cpp
@@ -24,6 +24,7 @@
#include "arm_compute/core/CL/kernels/CLGEMMLowpReductionKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
@@ -59,7 +60,7 @@ std::pair<Status, Window> validate_and_configure_window_matrix_a_reduction(ITens
Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
- AccessWindowStatic input_access(input, 0, 0, ceil_to_multiple(input->dimension(0), 16), input->dimension(1));
+ AccessWindowStatic input_access(input, 0, 0, input->dimension(0), input->dimension(1));
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win, input_access, output_access);
@@ -115,8 +116,12 @@ void CLGEMMLowpMatrixAReductionKernel::configure(const ICLTensor *mtx_a, ICLTens
CLBuildOptions build_opts;
build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(mtx_a->info()->dimension(0)));
+ const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
+
+ std::string kernel_name = "gemmlowp_matrix_a_reduction" + std::string(is_dot8_supported ? "_dot8" : "");
+
// Create kernel
- _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("gemmlowp_matrix_a_reduction", build_opts.options()));
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Configure kernel window
auto win_config = validate_and_configure_window_matrix_a_reduction(_input->info(), _output->info());
diff --git a/src/core/Utils.cpp b/src/core/Utils.cpp
index 41fc87e87a..78c3dba25a 100644
--- a/src/core/Utils.cpp
+++ b/src/core/Utils.cpp
@@ -252,6 +252,19 @@ const std::string &arm_compute::string_from_pooling_type(PoolingType type)
return pool_type_map[type];
}
+const std::string &arm_compute::string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage)
+{
+ static std::map<GEMMLowpOutputStageType, const std::string> output_stage_map =
+ {
+ { GEMMLowpOutputStageType::NONE, "" },
+ { GEMMLowpOutputStageType::QUANTIZE_DOWN, "quantize_down" },
+ { GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT, "quantize_down_fixedpoint" },
+ { GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT, "quantize_down_float" }
+ };
+
+ return output_stage_map[output_stage];
+}
+
std::string arm_compute::string_from_pixel_value(const PixelValue &value, const DataType data_type)
{
std::stringstream ss;
diff --git a/src/runtime/CL/functions/CLFullyConnectedLayer.cpp b/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
index 010985db06..c5637dba26 100644
--- a/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
+++ b/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
@@ -49,6 +49,7 @@ Status validate_mm(const ITensorInfo &input, const ITensorInfo &weights, const I
// Validate gemmlowp function
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(&input.clone()->set_quantization_info(input_quantization_info),
&weights.clone()->set_quantization_info(weights_quantization_info),
+ nullptr,
&output));
}
else
@@ -91,7 +92,7 @@ void CLFullyConnectedLayer::configure_mm(const ICLTensor *input, const ICLTensor
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
// Configure gemmlowp function
- _mm_gemmlowp.configure(input, weights, output);
+ _mm_gemmlowp.configure(input, weights, nullptr, output);
// Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
input->info()->set_quantization_info(input_quantization_info);
diff --git a/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp b/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
index 61180fd5d3..67f55d56e2 100644
--- a/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
@@ -91,19 +91,21 @@ void CLConvolutionLayerReshapeWeights::run()
}
CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
- : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _col2im_kernel(), _activationlayer_function(),
- _add_bias_kernel(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _tmp_output(), _data_layout(DataLayout::NCHW), _append_bias(false), _skip_im2col(false),
- _skip_col2im(false), _is_quantized(false), _is_activationlayer_enabled(false), _is_prepared(false)
+ : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(), _add_bias_kernel(),
+ _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _data_layout(DataLayout::NCHW), _append_bias(false), _skip_im2col(false), _skip_col2im(false), _is_quantized(false),
+ _is_activationlayer_enabled(false), _is_prepared(false)
{
}
-void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, int gemm_3d_depth)
+void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
+ int gemm_3d_depth)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);
- ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), output->info(), gemm_3d_depth, _skip_im2col));
+ ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), gemmlowp_output_stage, gemm_3d_depth, _skip_im2col));
const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
- gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */);
+ gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
+ false, gemmlowp_output_stage);
if(_is_quantized)
{
@@ -115,7 +117,7 @@ void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTenso
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
- _mm_gemmlowp.configure(input, weights, output, gemm_info);
+ _mm_gemmlowp.configure(input, weights, biases, output, gemm_info);
// Revert back QuantizatioInfo as input and weights could be used in other convolution layers
input->info()->set_quantization_info(input_quantization_info);
@@ -128,12 +130,14 @@ void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTenso
}
}
-Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, int gemm_3d_depth, bool skip_im2col)
+Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
+ const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, bool skip_im2col)
{
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
- gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */);
+ gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
+ false, gemmlowp_output_stage);
if(is_quantized)
{
@@ -148,7 +152,7 @@ Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITens
weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
// Perform validation step on GEMMLowp
- return CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), output, gemm_info);
+ return CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, output, gemm_info);
}
else
{
@@ -176,27 +180,26 @@ void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *
const DataLayout data_layout = input->info()->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
- const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
const unsigned int kernel_width = weights->info()->dimension(idx_width);
const unsigned int kernel_height = weights->info()->dimension(idx_height);
- _is_prepared = weights_info.retain_internal_weights();
- _original_weights = weights;
- _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
- _data_layout = data_layout;
- _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
- _skip_col2im = data_layout == DataLayout::NHWC;
- _append_bias = (biases != nullptr) && (!_is_quantized);
+ _is_prepared = weights_info.retain_internal_weights();
+ _original_weights = weights;
+ _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
+ _data_layout = data_layout;
+ _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
+ _skip_col2im = data_layout == DataLayout::NHWC;
+ _append_bias = (biases != nullptr) && (!_is_quantized);
+ _is_activationlayer_enabled = act_info.enabled();
// Set the GPU target for im2col and col2im
_im2col_kernel.set_target(CLScheduler::get().target());
_col2im_kernel.set_target(CLScheduler::get().target());
- const ICLTensor *gemm_input_to_use = input;
- ICLTensor *gemm_output_to_use = output;
- ICLTensor *gemm_output_staged_to_use = output;
+ const ICLTensor *gemm_input_to_use = input;
+ ICLTensor *gemm_output_to_use = output;
const ICLTensor *biases_to_use = (_append_bias && !_skip_im2col) ? biases : nullptr;
@@ -243,26 +246,17 @@ void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *
}
// Create GEMM output tensor
- if(!_skip_col2im || _is_quantized)
+ if(!_skip_col2im)
{
TensorShape shape_gemm;
- if(_skip_col2im)
- {
- shape_gemm = input->info()->tensor_shape();
- shape_gemm.set(idx_width, conv_w);
- shape_gemm.set(idx_height, conv_h);
- shape_gemm.set(idx_channel, mat_weights_cols);
- }
- else
- {
- shape_gemm = _im2col_output.info()->tensor_shape();
- shape_gemm.set(0, mat_weights_cols);
- shape_gemm.set(1, conv_w * conv_h);
- }
- // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
- const DataType gemm_data_type = _is_quantized ? DataType::S32 : data_type;
+
+ // If we cannot skip col2im it means we run im2col as well
+ shape_gemm = _im2col_output.info()->tensor_shape();
+ shape_gemm.set(0, mat_weights_cols);
+ shape_gemm.set(1, conv_w * conv_h);
+
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
- TensorInfo info_gemm(shape_gemm, 1, gemm_data_type);
+ TensorInfo info_gemm(shape_gemm, 1, data_type);
info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout());
_gemm_output.allocator()->init(info_gemm);
_memory_group.manage(&_gemm_output);
@@ -271,42 +265,64 @@ void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *
gemm_output_to_use = &_gemm_output;
}
- // Configure and tune GEMM
- configure_mm(gemm_input_to_use, &_weights_reshaped, gemm_output_to_use, (data_layout == DataLayout::NHWC) ? conv_h : 1);
-
- if(!_skip_im2col)
- {
- _im2col_output.allocator()->allocate();
- }
+ GEMMLowpOutputStageInfo gemmlowp_output_stage;
+ gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ gemmlowp_output_stage.gemmlowp_offset = 0;
+ gemmlowp_output_stage.gemmlowp_multiplier = 0;
+ gemmlowp_output_stage.gemmlowp_shift = 0;
// Configure output stage for quantized case
if(_is_quantized)
{
const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();
- if(!_skip_col2im)
+ float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
+ int output_multiplier, output_shift;
+ quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
+
+ int min_activation = 0;
+ int max_activation = 0;
+
+ const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
+ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
+ };
+
+ if(_is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0)
{
- _memory_group.manage(&_tmp_output);
- gemm_output_staged_to_use = &_tmp_output;
+ const int a_const_int = input->info()->quantization_info().quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
+ const int b_const_int = input->info()->quantization_info().quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);
+
+ min_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? input->info()->quantization_info().offset : b_const_int;
+ max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;
+
+ // If the activation layer is RELU, BOUNDED_RELU or LU_BOUNDED_RELU, we can use the GEMMLowp output stage to perform this operation
+ _is_activationlayer_enabled = false;
}
- float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
- _gemmlowp_output_stage.configure(gemm_output_to_use, biases, gemm_output_staged_to_use, multiplier, output_quant_info.offset);
+ // Set the GEMMLowp output stage info
+ gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
+ gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
+ gemmlowp_output_stage.gemmlowp_shift = output_shift;
+ gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
+ gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
}
- if(!_skip_col2im)
+ // Configure and tune GEMM
+ configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, gemmlowp_output_stage, (data_layout == DataLayout::NHWC) ? conv_h : 1);
+
+ if(!_skip_im2col)
{
- // Configure and tune Col2Im
- _col2im_kernel.configure(_is_quantized ? gemm_output_staged_to_use : gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups);
- CLScheduler::get().tune_kernel_static(_col2im_kernel);
+ _im2col_output.allocator()->allocate();
}
if(!_skip_col2im)
{
- _tmp_output.allocator()->allocate();
+ // Configure and tune Col2Im
+ _col2im_kernel.configure(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups);
+ CLScheduler::get().tune_kernel_static(_col2im_kernel);
}
- if(!_skip_col2im || _is_quantized)
+ if(!_skip_col2im)
{
_gemm_output.allocator()->allocate();
}
@@ -314,9 +330,6 @@ void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h),
"Output shape does not match the expected one");
- //Configure Activation Layer
- _is_activationlayer_enabled = act_info.enabled();
-
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
@@ -347,16 +360,16 @@ Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorI
const unsigned int kernel_width = weights->dimension(idx_width);
const unsigned int kernel_height = weights->dimension(idx_height);
- TensorInfo im2col_reshaped_info, info_gemm, tmp_info, weights_reshaped_info;
- const ITensorInfo *gemm_input_to_use = input;
- const ITensorInfo *gemm_output_to_use = output;
- const ITensorInfo *gemm_output_staged_to_use = output;
- const ITensorInfo *weights_to_use = weights;
+ TensorInfo im2col_reshaped_info, info_gemm, weights_reshaped_info;
+ const ITensorInfo *gemm_input_to_use = input;
+ const ITensorInfo *gemm_output_to_use = output;
+ const ITensorInfo *weights_to_use = weights;
- const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
- const bool append_bias = (biases != nullptr) && (!is_quantized);
- const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
- const bool skip_col2im = data_layout == DataLayout::NHWC;
+ const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
+ const bool append_bias = (biases != nullptr) && (!is_quantized);
+ const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
+ const bool skip_col2im = data_layout == DataLayout::NHWC;
+ bool is_activationlayer_enabled = act_info.enabled();
ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * num_groups) != input->dimension(idx_channel));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
@@ -418,52 +431,80 @@ Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorI
}
// Create GEMM output tensor
- if(!skip_col2im || is_quantized)
+ if(!skip_col2im)
{
- const DataType gemm_data_type = is_quantized ? DataType::S32 : data_type;
- TensorShape shape_gemm;
- if(skip_col2im)
- {
- shape_gemm = input->tensor_shape();
- shape_gemm.set(idx_width, conv_w);
- shape_gemm.set(idx_height, conv_h);
- shape_gemm.set(idx_channel, mat_weights_cols);
- }
- else
- {
- shape_gemm = gemm_input_to_use->tensor_shape();
- shape_gemm.set(0, mat_weights_cols);
- shape_gemm.set(1, conv_w * conv_h);
- }
- // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
- info_gemm = TensorInfo(shape_gemm, 1, gemm_data_type);
+ TensorShape shape_gemm;
+
+ shape_gemm = gemm_input_to_use->tensor_shape();
+ shape_gemm.set(0, mat_weights_cols);
+ shape_gemm.set(1, conv_w * conv_h);
+
+ info_gemm = TensorInfo(shape_gemm, 1, data_type);
info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout());
gemm_output_to_use = &info_gemm;
}
- ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, gemm_output_to_use, skip_col2im ? conv_h : 1, skip_im2col));
+ GEMMLowpOutputStageInfo gemmlowp_output_stage;
+ gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ gemmlowp_output_stage.gemmlowp_offset = 0;
+ gemmlowp_output_stage.gemmlowp_multiplier = 0;
+ gemmlowp_output_stage.gemmlowp_shift = 0;
if(is_quantized)
{
- if(!skip_col2im)
+ const QuantizationInfo output_quant_info = (output->total_size() == 0) ? input->quantization_info() : output->quantization_info();
+
+ float multiplier = input->quantization_info().scale * weights->quantization_info().scale / output_quant_info.scale;
+ int output_multiplier, output_shift;
+ quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
+
+ int min_activation = 0;
+ int max_activation = 0;
+
+ const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
+ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
+ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
+ };
+
+ if(is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0)
{
- tmp_info = TensorInfo(gemm_output_to_use->tensor_shape(), 1, DataType::QASYMM8);
- tmp_info.set_quantization_info(output->quantization_info());
- gemm_output_staged_to_use = &tmp_info;
+ const int a_const_int = input->quantization_info().quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
+ const int b_const_int = input->quantization_info().quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);
+
+ min_activation = b_const_int;
+ max_activation = a_const_int;
+
+ if(act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
+ {
+ min_activation = input->quantization_info().offset;
+ }
+ if(act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU)
+ {
+ max_activation = 255;
+ }
+
+ // If the activation layer is RELU, BOUNDED_RELU or LU_BOUNDED_RELU, we can use the GEMMLowp output stage to perform this operation
+ is_activationlayer_enabled = false;
+
+ // Set the GEMMLowp output stage info
+ gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
+ gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
+ gemmlowp_output_stage.gemmlowp_shift = output_shift;
+ gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
+ gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
}
- // Validate output stage for quantized case
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(gemm_output_to_use, biases, gemm_output_staged_to_use);
}
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, gemmlowp_output_stage, skip_col2im ? conv_h : 1, skip_im2col));
+
// Validate Col2Im
if(!skip_col2im)
{
- ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(is_quantized ? gemm_output_staged_to_use : gemm_output_to_use, output,
- Size2D(conv_w, conv_h), num_groups));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups));
}
//Validate Activation Layer
- if(act_info.enabled())
+ if(is_activationlayer_enabled)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
}
@@ -488,9 +529,6 @@ void CLGEMMConvolutionLayer::run()
{
// Run gemmlowp
_mm_gemmlowp.run();
-
- // Run output stage
- _gemmlowp_output_stage.run();
}
else
{
diff --git a/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp b/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
index f79fb43073..f2efb3249b 100644
--- a/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
+++ b/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
@@ -42,7 +42,7 @@ inline bool is_interleaved_transposed(int m, int n, int k, bool reshape_b_only_o
bool flag = true;
if(gpu_target_is_in(gpu_target,
- GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
+ GPUTarget::G71, GPUTarget::G72,
GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT,
GPUTarget::G52, GPUTarget::G52LIT))
{
@@ -56,6 +56,10 @@ inline bool is_interleaved_transposed(int m, int n, int k, bool reshape_b_only_o
flag = false;
}
}
+ else
+ {
+ flag = m > 1;
+ }
return flag;
}
@@ -69,24 +73,26 @@ CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemo
_mtx_a_reduction_kernel(),
_mtx_b_reduction_kernel(),
_offset_contribution_kernel(),
+ _offset_contribution_output_stage_kernel(),
_vector_sum_col(),
_vector_sum_row(),
_tmp_a(),
_tmp_b(),
+ _mm_result_s32(),
_original_b(nullptr),
_a_offset(0),
_b_offset(0),
_is_interleaved_transposed(true),
_reshape_b_only_on_first_run(false),
- _is_prepared(false)
+ _is_prepared(false),
+ _fuse_output_stage(false)
{
}
-void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, ICLTensor *output, const GEMMInfo &gemm_info)
+void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
- ARM_COMPUTE_UNUSED(gemm_info);
- ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), output->info(), gemm_info));
+ ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
_is_prepared = false;
_original_b = b;
@@ -108,6 +114,7 @@ void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
+ const bool unroll_block = dot8_supported(CLKernelLibrary::get().get_device());
const int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1);
const int n = b->info()->dimension(0);
const int k = a->info()->dimension(0);
@@ -133,15 +140,11 @@ void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor
}
// Configure interleave kernel
- _mtx_a_reshape_kernel.configure(a, &_tmp_a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d());
+ _mtx_a_reshape_kernel.configure(a, &_tmp_a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d(), unroll_block);
// Configure transpose kernel
_mtx_b_reshape_kernel.configure(b, &_tmp_b, mult_transpose1xW_width);
}
- // Configure matrix multiply kernel
- _mm_kernel.configure(matrix_a, matrix_b, output, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k,
- mult_transpose1xW_width, mult_interleave4x4_height,
- depth_output_gemm3d, reinterpret_input_as_3d));
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
@@ -168,8 +171,34 @@ void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor
_mtx_a_reduction_kernel.configure(a, &_vector_sum_row);
}
- // Configure offset contribution kernel
- _offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, a->info()->dimension(0), _a_offset, _b_offset);
+ // If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
+ if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
+ {
+ _fuse_output_stage = true;
+
+ _memory_group.manage(&_mm_result_s32);
+
+ // Configure matrix multiply kernel
+ _mm_kernel.configure(matrix_a, matrix_b, &_mm_result_s32, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k,
+ mult_transpose1xW_width, mult_interleave4x4_height,
+ depth_output_gemm3d, reinterpret_input_as_3d));
+
+ // Configure offset contribution kernel
+ _offset_contribution_output_stage_kernel.configure(&_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, output, a->info()->dimension(0),
+ _a_offset, _b_offset, gemm_info.gemmlowp_output_stage());
+
+ _mm_result_s32.allocator()->allocate();
+ }
+ else
+ {
+ // Configure matrix multiply kernel
+ _mm_kernel.configure(matrix_a, matrix_b, output, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k,
+ mult_transpose1xW_width, mult_interleave4x4_height,
+ depth_output_gemm3d, reinterpret_input_as_3d));
+
+ // Configure offset contribution kernel
+ _offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, a->info()->dimension(0), _a_offset, _b_offset);
+ }
// Allocate tensors
if(_is_interleaved_transposed)
@@ -192,10 +221,9 @@ void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor
}
}
-Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output, const GEMMInfo &gemm_info)
+Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
@@ -241,9 +269,6 @@ Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITenso
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &tmp_b_info, mult_transpose1xW_width));
}
- // Validate matrix multiply
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output, reshape_matrices, reshape_info));
-
TensorInfo info_vector_sum_col, info_vector_sum_row;
// Validate matrix B reduction kernel only if _a_offset is not equal to 0
@@ -264,11 +289,37 @@ Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITenso
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row));
}
- // Validate offset contribution kernel
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output,
- a_offset == 0 ? nullptr : &info_vector_sum_col,
- b_offset == 0 ? nullptr : &info_vector_sum_row,
- a_offset, b_offset));
+ if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
+ {
+ TensorInfo mm_result_s32_info{};
+
+ // Output tensor auto inizialitation if not yet initialized
+ auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, reshape_matrices, reshape_info)).set_data_type(DataType::S32));
+
+ // Validate matrix multiply
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, reshape_matrices, reshape_info));
+
+ // Validate offset contribution kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
+ a_offset == 0 ? nullptr : &info_vector_sum_col,
+ b_offset == 0 ? nullptr : &info_vector_sum_row,
+ c,
+ output,
+ a_offset, b_offset,
+ gemm_info.gemmlowp_output_stage()));
+ }
+ else
+ {
+ // Validate matrix multiply
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output, reshape_matrices, reshape_info));
+
+ // Validate offset contribution kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output,
+ a_offset == 0 ? nullptr : &info_vector_sum_col,
+ b_offset == 0 ? nullptr : &info_vector_sum_row,
+ c,
+ a_offset, b_offset));
+ }
return Status{};
}
@@ -306,8 +357,16 @@ void CLGEMMLowpMatrixMultiplyCore::run()
CLScheduler::get().enqueue(_mtx_a_reduction_kernel, false);
}
- // Run offset contribution kernel
- CLScheduler::get().enqueue(_offset_contribution_kernel, true);
+ if(_fuse_output_stage)
+ {
+ // Run offset contribution/output stage kernel
+ CLScheduler::get().enqueue(_offset_contribution_output_stage_kernel, true);
+ }
+ else
+ {
+ // Run offset contribution kernel
+ CLScheduler::get().enqueue(_offset_contribution_kernel, true);
+ }
_memory_group.release();
}
diff --git a/src/runtime/CL/functions/CLGEMMLowpOutputStage.cpp b/src/runtime/CL/functions/CLGEMMLowpOutputStage.cpp
index f5dc655776..f1c24626dc 100644
--- a/src/runtime/CL/functions/CLGEMMLowpOutputStage.cpp
+++ b/src/runtime/CL/functions/CLGEMMLowpOutputStage.cpp
@@ -45,17 +45,17 @@ Status CLGEMMLowpQuantizeDownInt32ToUint8Scale::validate(const ITensorInfo *inpu
void CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift,
- int min, int max, unsigned int output_3d_depth)
+ int min, int max)
{
auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel>();
- k->configure(input, bias, output, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, output_3d_depth);
+ k->configure(input, bias, output, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
_kernel = std::move(k);
}
Status CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
- int min, int max, unsigned int output_3d_depth)
+ int min, int max)
{
- return CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(input, bias, output, min, max, output_3d_depth);
+ return CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(input, bias, output, min, max);
}
void CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloat::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output,
diff --git a/src/runtime/NEON/functions/NEFullyConnectedLayer.cpp b/src/runtime/NEON/functions/NEFullyConnectedLayer.cpp
index 60f6294394..45e21b53d1 100644
--- a/src/runtime/NEON/functions/NEFullyConnectedLayer.cpp
+++ b/src/runtime/NEON/functions/NEFullyConnectedLayer.cpp
@@ -50,6 +50,7 @@ Status validate_mm(const ITensorInfo &input, const ITensorInfo &weights, const I
// Validate gemmlowp function
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(&input.clone()->set_quantization_info(input_quantization_info),
&weights.clone()->set_quantization_info(weights_quantization_info),
+ nullptr,
&output));
}
else
@@ -93,7 +94,7 @@ void NEFullyConnectedLayer::configure_mm(const ITensor *input, const ITensor *we
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
// Configure gemmlowp function
- _mm_gemmlowp.configure(input, weights, output);
+ _mm_gemmlowp.configure(input, weights, nullptr, output);
// Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
input->info()->set_quantization_info(input_quantization_info);
diff --git a/src/runtime/NEON/functions/NEGEMMConvolutionLayer.cpp b/src/runtime/NEON/functions/NEGEMMConvolutionLayer.cpp
index fb6d4a1847..fc65469488 100644
--- a/src/runtime/NEON/functions/NEGEMMConvolutionLayer.cpp
+++ b/src/runtime/NEON/functions/NEGEMMConvolutionLayer.cpp
@@ -111,7 +111,7 @@ void NEGEMMConvolutionLayer::configure_mm(const ITensor *input, const ITensor *w
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
- _mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
+ _mm_gemmlowp.configure(input, weights, nullptr, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
// Revert back QuantizatioInfo as input and weights could be used in other convolution layers
input->info()->set_quantization_info(input_quantization_info);
@@ -143,7 +143,7 @@ Status NEGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITens
weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
// Perform validation step on GEMMLowp
- return NEGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), output, gemm_info);
+ return NEGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), nullptr, output, gemm_info);
}
else
{
diff --git a/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.cpp b/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.cpp
index 828011d019..80f5ab0c93 100644
--- a/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.cpp
+++ b/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.cpp
@@ -47,10 +47,11 @@ NEGEMMLowpMatrixMultiplyCore::NEGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemo
{
}
-void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b, ITensor *output, const GEMMInfo &gemm_info)
+void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
- ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), output->info(), gemm_info));
+ ARM_COMPUTE_UNUSED(c);
+ ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
// Clear state
_mtx_a_reshape_kernel = nullptr;
@@ -181,11 +182,12 @@ void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b,
}
}
-Status NEGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output, const GEMMInfo &gemm_info)
+Status NEGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(c != nullptr, "Bias addition not supported in NEGEMMLowpMatrixMultiplyCore");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
"The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(1) != (output)->dimension(1),
diff --git a/tests/benchmark/fixtures/GEMMLowpFixture.h b/tests/benchmark/fixtures/GEMMLowpFixture.h
index 46a2f5cc6a..33c6415d20 100644
--- a/tests/benchmark/fixtures/GEMMLowpFixture.h
+++ b/tests/benchmark/fixtures/GEMMLowpFixture.h
@@ -58,7 +58,7 @@ public:
c = create_tensor<TensorType>(shape_dst, DataType::S32, 1, QuantizationInfo(1.0f / 255.0f, 0));
// Create and configure function
- gemmlowp.configure(&a, &b, &c);
+ gemmlowp.configure(&a, &b, nullptr, &c);
// Allocate tensors
a.allocator()->allocate();
diff --git a/tests/validate_examples/cl_gemm.cpp b/tests/validate_examples/cl_gemm.cpp
index cdaa33f31a..8b3a103db7 100644
--- a/tests/validate_examples/cl_gemm.cpp
+++ b/tests/validate_examples/cl_gemm.cpp
@@ -193,7 +193,7 @@ public:
init_sgemm_output(tmp_dst, src0, src1, DataType::S32);
// Configure GEMMlowp matrix multiply function
- mm_gemmlowp.configure(&src0, &src1, &tmp_dst);
+ mm_gemmlowp.configure(&src0, &src1, nullptr, &tmp_dst);
// Configure GEMMlowp output stage
mm_gemmlowp_output_stage.configure(&tmp_dst, add_bias ? &biases : nullptr, &dst, dst_multiplier, dst_shift, offset_dst);
diff --git a/tests/validation/CL/GEMMLowp.cpp b/tests/validation/CL/GEMMLowp.cpp
index 42bb2123bf..f0f768dd1b 100644
--- a/tests/validation/CL/GEMMLowp.cpp
+++ b/tests/validation/CL/GEMMLowp.cpp
@@ -67,7 +67,8 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::c
// Create and configure function
CLGEMMLowpMatrixMultiplyCore gemmlowp_mm;
- gemmlowp_mm.configure(&a, &b, &c);
+ // TODO (giaiod01) COMPMID-1672 - Extending the test to validate add bias in offset contribution
+ gemmlowp_mm.configure(&a, &b, nullptr, &c);
}
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMLowpMatrixMultiplyCoreFixture, framework::DatasetMode::ALL, datasets::SmallGEMMLowpDataset())
@@ -155,7 +156,7 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::da
}
// Validate padding
- const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+ const PaddingSize padding = PaddingCalculator(shape.x(), 4).required_padding();
validate(in.info()->padding(), padding);
validate(out.info()->padding(), padding);
@@ -238,7 +239,7 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(framework::da
}
// Validate padding
- const PaddingSize padding = PaddingCalculator(shape.x(), 16).required_padding();
+ const PaddingSize padding = PaddingCalculator(shape.x(), 4).required_padding();
validate(in.info()->padding(), padding);
validate(out.info()->padding(), padding);
diff --git a/tests/validation/NEON/GEMMLowp.cpp b/tests/validation/NEON/GEMMLowp.cpp
index 9eba3c85c1..1458c9fdc3 100644
--- a/tests/validation/NEON/GEMMLowp.cpp
+++ b/tests/validation/NEON/GEMMLowp.cpp
@@ -95,7 +95,7 @@ DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, framework::dataset::c
// Create and configure function
NEGEMMLowpMatrixMultiplyCore gemmlowp_mm;
- gemmlowp_mm.configure(&a, &b, &c);
+ gemmlowp_mm.configure(&a, &b, nullptr, &c);
}
// *INDENT-OFF*
@@ -125,6 +125,7 @@ DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
// Lock tensors
Status status = NEGEMMLowpMatrixMultiplyCore::validate(&a_info.clone()->set_is_resizable(false),
&b_info.clone()->set_is_resizable(false),
+ nullptr,
&output_info.clone()->set_is_resizable(false));
ARM_COMPUTE_EXPECT(bool(status) == expected, framework::LogLevel::ERRORS);
}
diff --git a/tests/validation/fixtures/GEMMLowpFixture.h b/tests/validation/fixtures/GEMMLowpFixture.h
index 73cb8328ea..b61b4eca38 100644
--- a/tests/validation/fixtures/GEMMLowpFixture.h
+++ b/tests/validation/fixtures/GEMMLowpFixture.h
@@ -75,7 +75,8 @@ protected:
// Create and configure function
// The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output
FunctionType gemmlowp;
- gemmlowp.configure(&a, &b, &c, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_c[2] : 1), reinterpret_input_as_3d));
+ // TODO (COMPMID-1672) - Extending the test to validate add bias in offset contribution
+ gemmlowp.configure(&a, &b, nullptr, &c, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_c[2] : 1), reinterpret_input_as_3d));
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);