aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Android.bp1
-rw-r--r--SConscript1
-rw-r--r--arm_compute/core/Utils.h8
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl13
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl48
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl140
-rw-r--r--src/core/CL/cl_kernels/common/gemm.cl1087
-rw-r--r--src/core/CL/cl_kernels/common/gemm_utils.cl874
-rw-r--r--src/core/Utils.cpp7
-rw-r--r--src/gpu/cl/ClKernelLibrary.cpp12
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp23
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h3
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp22
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h4
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.cpp15
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h3
-rw-r--r--src/gpu/cl/operators/ClGemm.cpp8
-rw-r--r--src/gpu/cl/operators/ClGemm.h1
18 files changed, 1224 insertions, 1046 deletions
diff --git a/Android.bp b/Android.bp
index 32d5805e59..98f5237274 100644
--- a/Android.bp
+++ b/Android.bp
@@ -40,6 +40,7 @@ opencl_srcs = [
"src/core/CL/cl_kernels/common/floor.cl",
"src/core/CL/cl_kernels/common/gather.cl",
"src/core/CL/cl_kernels/common/gemm.cl",
+ "src/core/CL/cl_kernels/common/gemm_utils.cl",
"src/core/CL/cl_kernels/common/gemmlowp.cl",
"src/core/CL/cl_kernels/common/gemv.cl",
"src/core/CL/cl_kernels/common/generate_proposals.cl",
diff --git a/SConscript b/SConscript
index 6420f31cf6..6198445b08 100644
--- a/SConscript
+++ b/SConscript
@@ -310,6 +310,7 @@ if env['opencl'] and env['embed_kernels']:
'src/core/CL/cl_kernels/common/floor.cl',
'src/core/CL/cl_kernels/common/gather.cl',
'src/core/CL/cl_kernels/common/gemm.cl',
+ 'src/core/CL/cl_kernels/common/gemm_utils.cl',
'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl',
'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl',
'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl',
diff --git a/arm_compute/core/Utils.h b/arm_compute/core/Utils.h
index af9a777a0c..0ad80bc998 100644
--- a/arm_compute/core/Utils.h
+++ b/arm_compute/core/Utils.h
@@ -952,6 +952,14 @@ inline ::std::istream &operator>>(::std::istream &stream, DataType &data_type)
*/
std::string lower_string(const std::string &val);
+/** Raise a given string to upper case
+ *
+ * @param[in] val Given string to lower.
+ *
+ * @return The upper case string
+ */
+std::string upper_string(const std::string &val);
+
/** Check if a given data type is of floating point type
*
* @param[in] dt Input data type.
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
index 4665d612f5..d8453ed80a 100644
--- a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
@@ -27,7 +27,7 @@
#include "repeat.h"
/** (EXPERIMENTAL_POST_OPS) gemm_mm_native kernel */
-#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
+#if defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
#define VFMA(a, b, c) \
@@ -107,6 +107,7 @@
#error "M0 not supported"
#endif // M0 not supported
+#if defined(GEMM_MM_NATIVE_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -140,8 +141,11 @@ __kernel void gemm_mm_native_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
#if defined(BETA)
uint bias_stride_z,
#endif //defined(BETA)
- uint dst_stride_z,
- uint eltwise_operand_stride_z
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z,
+ const int M,
+ const int N,
+ const int K
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint lhs_cross_plane_pad
@@ -360,5 +364,6 @@ __kernel void gemm_mm_native_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
// Store output block
STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
}
+#endif // defined(GEMM_MM_NATIVE_POST_ACT_ELTWISE_OP_ACT)
#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
index 32186c359b..89577e9ebd 100644
--- a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
@@ -27,7 +27,7 @@
/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped kernel */
-#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR)
#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
#if defined(MIXED_PRECISION)
@@ -207,6 +207,7 @@
#error "N0 value not supported"
#endif // N0 conditions
+#if defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -235,7 +236,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLAR
IMAGE_DECLARATION(dst),
// Post Op arguments
IMAGE_DECLARATION(eltwise_operand),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -247,7 +247,10 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLAR
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define LHS_BLOCK_SIZE ((K0) * (M0))
@@ -303,7 +306,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLAR
REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
- for(int i = 0; i < k; i += K0)
+ for(int i = 0; i < K; i += K0)
{
// Supported cases (M0, K0):
// 1,2 - 1,3 - 1,4 - 1,8 - 1,16
@@ -425,8 +428,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLAR
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_POST_ACT_ELTWISE_OP_ACT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -455,7 +459,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAG
IMAGE_DECLARATION(dst),
// Post Op arguments
IMAGE_DECLARATION(eltwise_operand),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -467,7 +470,10 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAG
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
@@ -643,7 +649,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAG
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
#if defined(LHS_TRANSPOSE)
@@ -755,6 +761,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAG
CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
(M0, N0, TYPE, A, B, C)
+#if defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -774,6 +781,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAG
* @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
* @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -783,7 +793,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLAR
IMAGE_DECLARATION(dst),
// Post Op arguments
IMAGE_DECLARATION(eltwise_operand),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -795,7 +804,10 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLAR
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define LHS_BLOCK_SIZE ((K0) * (M0))
@@ -858,7 +870,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLAR
__global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
__global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
- for(int i = 0; i < k; i += K0)
+ for(int i = 0; i < K; i += K0)
{
VEC_DATA_TYPE(DATA_TYPE, M0)
a0;
@@ -1083,7 +1095,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLAR
#undef RHS_OFFSET_X
#undef RHS_STEP_X
}
-#if defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
+
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -1112,7 +1126,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAG
IMAGE_DECLARATION(dst),
// Post Op arguments
IMAGE_DECLARATION(eltwise_operand),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -1124,7 +1137,10 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAG
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
@@ -1401,8 +1417,8 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAG
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
#endif // defined(LHS_TRANSPOSE)
#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) \ No newline at end of file
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR)
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
index e96aba613b..7f4ad814fb 100644
--- a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
@@ -26,7 +26,7 @@
#include "repeat.h"
/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped_only_rhs kernel */
-#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
+#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
#define CONCAT(a, b) a##b
@@ -151,6 +151,7 @@
#error "N0 value not supported"
#endif // N0 conditions
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -194,7 +195,10 @@ __kernel void gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARAT
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))
@@ -409,8 +413,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARAT
#undef RHS_OFFSET_X
#undef RHS_STEP_X
}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -430,6 +435,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARAT
* @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
* @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -454,12 +462,15 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
-#define LEFTOVER_K (K % K0)
+ const uint LEFTOVER_K = K % K0;
// Block size
#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
@@ -562,99 +573,99 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_
x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
}
-#if LEFTOVER_K != 0
- // Note: We cannot read out-of-bound elements from the RHS matrix because
- // the RHS width is always multiple of K0. This is not be true for the LHS matrix
-
- union UNION_VEC_TYPE
+ if(LEFTOVER_K != 0)
{
- DATA_TYPE s[K0];
- VEC_DATA_TYPE(DATA_TYPE, K0)
- v;
- };
+ // Note: We cannot read out-of-bound elements from the RHS matrix because
+ // the RHS width is always multiple of K0. This is not be true for the LHS matrix
+
+ union UNION_VEC_TYPE
+ {
+ DATA_TYPE s[K0];
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ v;
+ };
- union UNION_VEC_TYPE a0 = {.v = 0 };
+ union UNION_VEC_TYPE a0 = {.v = 0 };
#if M0 > 1
- union UNION_VEC_TYPE a1 = {.v = 0 };
+ union UNION_VEC_TYPE a1 = {.v = 0 };
#endif // M0 > 1
#if M0 > 2
- union UNION_VEC_TYPE a2 = {.v = 0 };
+ union UNION_VEC_TYPE a2 = {.v = 0 };
#endif // M0 > 2
#if M0 > 3
- union UNION_VEC_TYPE a3 = {.v = 0 };
+ union UNION_VEC_TYPE a3 = {.v = 0 };
#endif // M0 > 3
#if M0 > 4
- union UNION_VEC_TYPE a4 = {.v = 0 };
+ union UNION_VEC_TYPE a4 = {.v = 0 };
#endif // M0 > 4
#if M0 > 5
- union UNION_VEC_TYPE a5 = {.v = 0 };
+ union UNION_VEC_TYPE a5 = {.v = 0 };
#endif // M0 > 5
#if M0 > 6
- union UNION_VEC_TYPE a6 = {.v = 0 };
+ union UNION_VEC_TYPE a6 = {.v = 0 };
#endif // M0 > 6
#if M0 > 7
- union UNION_VEC_TYPE a7 = {.v = 0 };
+ union UNION_VEC_TYPE a7 = {.v = 0 };
#endif // M0 > 7
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
- // Load from RHS matrix
- LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+ // Load from RHS matrix
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
- // Load from LHS matrix
- for(int k = 0; k < LEFTOVER_K; ++k)
- {
- a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
+ // Load from LHS matrix
+ for(int k = 0; k < LEFTOVER_K; ++k)
+ {
+ a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
#if M0 > 1
- a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
+ a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
#endif // M0 > 1
#if M0 > 2
- a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
+ a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
#endif // M0 > 2
#if M0 > 3
- a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
+ a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
#endif // M0 > 3
#if M0 > 4
- a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
+ a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
#endif // M0 > 4
#if M0 > 5
- a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
+ a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
#endif // M0 > 5
#if M0 > 6
- a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
+ a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
#endif // M0 > 6
#if M0 > 7
- a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
+ a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
#endif // M0 > 7
- lhs_offset += sizeof(DATA_TYPE);
- }
+ lhs_offset += sizeof(DATA_TYPE);
+ }
- // Accumulate
- ARM_DOT_K0XN0(K0, a0.v, b, c0);
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0.v, b, c0);
#if M0 > 1
- ARM_DOT_K0XN0(K0, a1.v, b, c1);
+ ARM_DOT_K0XN0(K0, a1.v, b, c1);
#endif // M0 > 1
#if M0 > 2
- ARM_DOT_K0XN0(K0, a2.v, b, c2);
+ ARM_DOT_K0XN0(K0, a2.v, b, c2);
#endif // M0 > 2
#if M0 > 3
- ARM_DOT_K0XN0(K0, a3.v, b, c3);
+ ARM_DOT_K0XN0(K0, a3.v, b, c3);
#endif // M0 > 3
#if M0 > 4
- ARM_DOT_K0XN0(K0, a4.v, b, c4);
+ ARM_DOT_K0XN0(K0, a4.v, b, c4);
#endif // M0 > 4
#if M0 > 5
- ARM_DOT_K0XN0(K0, a5.v, b, c5);
+ ARM_DOT_K0XN0(K0, a5.v, b, c5);
#endif // M0 > 5
#if M0 > 6
- ARM_DOT_K0XN0(K0, a6.v, b, c6);
+ ARM_DOT_K0XN0(K0, a6.v, b, c6);
#endif // M0 > 6
#if M0 > 7
- ARM_DOT_K0XN0(K0, a7.v, b, c7);
+ ARM_DOT_K0XN0(K0, a7.v, b, c7);
#endif // M0 > 7
-
-#endif // LEFTOVER_K != 0
+ }
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
@@ -723,10 +734,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
-#undef LEFTOVER_K
#undef PIXEL_UNIT
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
#define VFMA(a, b, c) \
({ \
@@ -805,6 +815,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_
#error "M0 not supported"
#endif // M0 not supported
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -824,6 +835,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_
* @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
* @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -848,7 +862,10 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARA
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))
@@ -1087,9 +1104,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARA
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
* Post op 1: activation (optional)
* Post op 2: elementwise op
@@ -1109,6 +1128,9 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARA
* @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
* @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -1133,7 +1155,10 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
@@ -1145,9 +1170,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE
#if defined(RHS_INTERLEAVE)
#define RHS_OFFSET_X (PIXEL_UNIT)
#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#define RHS_STEP_LOOP (1)
#else // defined(RHS_INTERLEAVE)
#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
#define RHS_STEP_X (PIXEL_UNIT)
+#define RHS_STEP_LOOP (H0)
#endif // defined(RHS_INTERLEAVE)
uint x = get_global_id(0);
@@ -1365,7 +1392,8 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K) \ No newline at end of file
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl
index a76ad458a6..cc7392d728 100644
--- a/src/core/CL/cl_kernels/common/gemm.cl
+++ b/src/core/CL/cl_kernels/common/gemm.cl
@@ -24,856 +24,7 @@
#include "gemm_helpers.h"
#include "repeat.h"
-#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
-#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
-#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
-#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
-#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
-#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
-#define CONCAT_INC(K0) INC##K0
-#define INC(K0) CONCAT_INC(K0)
-
-#if(SRC_WIDTH % K0)
-#define BOUNDARY_CONDITION_X(x, a) \
- ({ \
- a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
- })
-#else // (SRC_WIDTH % K0)
-#define BOUNDARY_CONDITION_X(x, a) \
- ({})
-#endif // (SRC_WIDTH % K0)
-
-#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \
- ({ \
- if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \
- { \
- if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
- { \
- LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- else \
- { \
- LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- } \
- else \
- { \
- if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
- { \
- LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- else \
- { \
- LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- } \
- })
-
-/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
- * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
- * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
- * @note Only the following values for M0, K0 and V0 are supported:
- * M0: 2,3,4,5,6,7,8
- * K0: 2,3,4,8,16
- * V0: greater than 0
- * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- *
- * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- */
-__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst)
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
- )
-{
- // Block size
-#define BLOCK_SIZE ((M0) * (K0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (K0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (K0) * (V0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (K0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
- (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
-
- // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src_stride_z by DEPTH_GEMM3D
-
- input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- input_ptr += z * (uint)src_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- output_ptr += z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- // Load values from the LHS matrix
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
-
- LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
-
- // ---------------------------Store output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-
-#if M0 == 2
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 3 // M0 == 3
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 4 // M0 == 4
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 5 // M0 == 5
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- DATA_TYPE res1 = a4.s##i; \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
- })
-#elif M0 == 6 // M0 == 6
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VEC_DATA_TYPE(DATA_TYPE, 2) \
- res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- VSTORE(2) \
- (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
- })
-#elif M0 == 7 // M0 == 7
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VEC_DATA_TYPE(DATA_TYPE, 3) \
- res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- VSTORE(3) \
- (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
- })
-#elif M0 == 8 // M0 == 8
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#else // M0 not supported
-#error "M0 value not supported"
-#endif // N0 conditions
-
-/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
- * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
- * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
- * @note Only the following values for M0, K0 and V0 are supported:
- * M0: 2,3,4,5,6,7,8
- * K0: 2,3,4,8,16
- * V0: greater than 0
- * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- *
- * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- */
-__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst)
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
- )
-{
- // Block size
-#define BLOCK_SIZE ((M0) * (K0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (M0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (M0) * (V0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (M0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
- (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
-
- // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src_stride_z by DEPTH_GEMM3D
-
- input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- input_ptr += z * (uint)src_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- output_ptr += z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
-
- LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
-
- // ---------------------------Transpose and store block -----------------------
-
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
-#if K0 > 2
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
-#endif // K0 > 2
-#if K0 > 3
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
-#endif // K0 > 3
-#if K0 > 4
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
-#endif // K0 > 4
-#if K0 > 8
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
-#endif // K0 > 8
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
-
-#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
-/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
- * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- * @note Only the following values for K0, N0 and H0 are supported:
- * N0: 2,3,4,8,16
- * K0: 1,2,3,4,8,16
- * H0: greater than 0
- *
- * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Block size
-#define BLOCK_SIZE ((K0) * (N0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (N0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (N0) * (H0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (N0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
- x / (uint)H0)
- * (uint)dst_stride_y)
- + z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
-
- REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0;
-
- // Load values from the RHS matrix
- a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
-#if K0 > 1
- if(y * (uint)K0 + 1 < SRC_HEIGHT)
- {
- a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- }
-#endif // K0 > 1
-#if K0 > 2
- if(y * (uint)K0 + 2 < SRC_HEIGHT)
- {
- a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
- }
-#endif // K0 > 2
-#if K0 > 3
- if(y * (uint)K0 + 3 < SRC_HEIGHT)
- {
- a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
- }
-#endif // K0 > 3
-#if K0 > 4
- if(y * (uint)K0 + 4 < SRC_HEIGHT)
- {
- a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
- }
- if(y * (uint)K0 + 5 < SRC_HEIGHT)
- {
- a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
- }
- if(y * (uint)K0 + 6 < SRC_HEIGHT)
- {
- a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
- }
- if(y * (uint)K0 + 7 < SRC_HEIGHT)
- {
- a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
- }
-#endif // K0 > 4
-#if K0 > 8
- if(y * (uint)K0 + 8 < SRC_HEIGHT)
- {
- a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
- }
- if(y * (uint)K0 + 9 < SRC_HEIGHT)
- {
- a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
- }
- if(y * (uint)K0 + 10 < SRC_HEIGHT)
- {
- aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
- }
- if(y * (uint)K0 + 11 < SRC_HEIGHT)
- {
- aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
- }
- if(y * (uint)K0 + 12 < SRC_HEIGHT)
- {
- aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
- }
- if(y * (uint)K0 + 13 < SRC_HEIGHT)
- {
- aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
- }
- if(y * (uint)K0 + 14 < SRC_HEIGHT)
- {
- aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
- }
- if(y * (uint)K0 + 15 < SRC_HEIGHT)
- {
- aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
- }
-#endif // K0 > 8
-
- // ---------------------------Store output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-
-#if defined(TRANSPOSE)
-/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
- * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- * @note The option -DTRANSPOSE must passed at compile time.
- * @note Only the following values for K0, N0 and H0 are supported:
- * N0: 2,3,4,8,16
- * K0: 2,3,4,8,16
- * H0: greater than 0
- *
- * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Block size
-#define BLOCK_SIZE ((K0) * (N0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (K0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (K0) * (H0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (K0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
- (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0;
-
- // Load values from the RHS matrix
- a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
- if(y * (uint)K0 + 1 < SRC_HEIGHT)
- {
- a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- }
-#if K0 > 2
- if(y * (uint)K0 + 2 < SRC_HEIGHT)
- {
- a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
- }
-#endif // K0 > 2
-#if K0 > 3
- if(y * (uint)K0 + 3 < SRC_HEIGHT)
- {
- a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
- }
-#endif // K0 > 3
-#if K0 > 4
- if(y * (uint)K0 + 4 < SRC_HEIGHT)
- {
- a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
- }
- if(y * (uint)K0 + 5 < SRC_HEIGHT)
- {
- a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
- }
- if(y * (uint)K0 + 6 < SRC_HEIGHT)
- {
- a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
- }
- if(y * (uint)K0 + 7 < SRC_HEIGHT)
- {
- a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
- }
-#endif // K0 > 4
-#if K0 > 8
- if(y * (uint)K0 + 8 < SRC_HEIGHT)
- {
- a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
- }
- if(y * (uint)K0 + 9 < SRC_HEIGHT)
- {
- a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
- }
- if(y * (uint)K0 + 10 < SRC_HEIGHT)
- {
- aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
- }
- if(y * (uint)K0 + 11 < SRC_HEIGHT)
- {
- aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
- }
- if(y * (uint)K0 + 12 < SRC_HEIGHT)
- {
- aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
- }
- if(y * (uint)K0 + 13 < SRC_HEIGHT)
- {
- aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
- }
- if(y * (uint)K0 + 14 < SRC_HEIGHT)
- {
- aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
- }
- if(y * (uint)K0 + 15 < SRC_HEIGHT)
- {
- aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
- }
-#endif // K0 > 8
-
- // ---------------------------Transpose the block ------------------------------
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0;
-
-#if K0 == 2
- // This part computes the following transpositions:
- // 2x2 -> 2x2
- // 2x4 -> 4x2
- // 2x8 -> 8x2
- // 2x16 -> 16x2
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF);
-#endif // N0 > 8
-
-#elif K0 == 3 // K0 == 2
- // This part computes the following transpositions:
- // 3x2 -> 2x3
- // 3x4 -> 4x3
- // 3x8 -> 8x3
- // 3x16 -> 16x3
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF);
-#endif // N0 > 8
-
-#elif K0 == 4 // K0 == 4
- // This part computes the following transpositions:
- // 4x2 -> 2x4
- // 4x4 -> 4x4
- // 4x8 -> 8x4
- // 4x16 -> 16x4
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
-#endif // N0 > 8
-
-#elif K0 == 8 // K0 == 8
- // This part computes the following transpositions:
- // 8x2 -> 2x8
- // 8x4 -> 4x8
- // 8x8 -> 8x8
- // 8x16 -> 16x8
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
-#endif // N0 > 8
-
-#elif K0 == 16 // K0 == 16
-
- // This part computes the following transpositions:
- // 16x2 -> 2x16
- // 16x4 -> 4x16
- // 16x8 -> 8x16
- // 16x16 -> 16x16
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
- a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
- a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
- a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
- a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
- a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
- a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
- a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
- a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
- a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
- a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
- a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
- a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
- a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
- a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
- a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
- a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
-#endif // N0 > 8
-
-#else // N0 == 16
-#error "Not supported N0 value"
-#endif // N0 > 2
-
- // ---------------------------Store the output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-#endif // defined(TRANSPOSE)
-#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
-
-#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
+#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
#define CONCAT(a, b) a##b
@@ -997,14 +148,14 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
#error "N0 value not supported"
#endif // N0 conditions
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
* @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
*
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
- * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
@@ -1056,6 +207,9 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -1077,7 +231,10 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))
@@ -1288,9 +445,11 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
@@ -1298,7 +457,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
* could be different from the value returned by get_image_height(rhs_img).
@@ -1348,6 +507,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -1369,12 +531,15 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
-#define LEFTOVER_K (K % K0)
+ const uint LEFTOVER_K = K % K0;
// Block size
#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
@@ -1477,99 +642,100 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
}
-#if LEFTOVER_K != 0
- // Note: We cannot read out-of-bound elements from the RHS matrix because
- // the RHS width is always multiple of K0. This is not be true for the LHS matrix
-
- union UNION_VEC_TYPE
+ if(LEFTOVER_K != 0)
{
- DATA_TYPE s[K0];
- VEC_DATA_TYPE(DATA_TYPE, K0)
- v;
- };
-
- union UNION_VEC_TYPE a0 = {.v = 0 };
+ // Note: We cannot read out-of-bound elements from the RHS matrix because
+ // the RHS width is always multiple of K0. This is not be true for the LHS matrix
+ // Left-over accumulations for LHS matrix
+
+ union UNION_VEC_TYPE
+ {
+ DATA_TYPE s[K0];
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ v;
+ };
+
+ union UNION_VEC_TYPE a0 = {.v = 0 };
#if M0 > 1
- union UNION_VEC_TYPE a1 = {.v = 0 };
+ union UNION_VEC_TYPE a1 = {.v = 0 };
#endif // M0 > 1
#if M0 > 2
- union UNION_VEC_TYPE a2 = {.v = 0 };
+ union UNION_VEC_TYPE a2 = {.v = 0 };
#endif // M0 > 2
#if M0 > 3
- union UNION_VEC_TYPE a3 = {.v = 0 };
+ union UNION_VEC_TYPE a3 = {.v = 0 };
#endif // M0 > 3
#if M0 > 4
- union UNION_VEC_TYPE a4 = {.v = 0 };
+ union UNION_VEC_TYPE a4 = {.v = 0 };
#endif // M0 > 4
#if M0 > 5
- union UNION_VEC_TYPE a5 = {.v = 0 };
+ union UNION_VEC_TYPE a5 = {.v = 0 };
#endif // M0 > 5
#if M0 > 6
- union UNION_VEC_TYPE a6 = {.v = 0 };
+ union UNION_VEC_TYPE a6 = {.v = 0 };
#endif // M0 > 6
#if M0 > 7
- union UNION_VEC_TYPE a7 = {.v = 0 };
+ union UNION_VEC_TYPE a7 = {.v = 0 };
#endif // M0 > 7
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
- // Load from RHS matrix
- LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+ // Load from RHS matrix
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
- // Load from LHS matrix
- for(int k = 0; k < LEFTOVER_K; ++k)
- {
- a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
+ // Load from LHS matrix
+ for(int k = 0; k < LEFTOVER_K; ++k)
+ {
+ a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
#if M0 > 1
- a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
+ a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
#endif // M0 > 1
#if M0 > 2
- a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
+ a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
#endif // M0 > 2
#if M0 > 3
- a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
+ a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
#endif // M0 > 3
#if M0 > 4
- a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
+ a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
#endif // M0 > 4
#if M0 > 5
- a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
+ a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
#endif // M0 > 5
#if M0 > 6
- a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
+ a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
#endif // M0 > 6
#if M0 > 7
- a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
+ a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
#endif // M0 > 7
- lhs_offset += sizeof(DATA_TYPE);
- }
+ lhs_offset += sizeof(DATA_TYPE);
+ }
- // Accumulate
- ARM_DOT_K0XN0(K0, a0.v, b, c0);
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0.v, b, c0);
#if M0 > 1
- ARM_DOT_K0XN0(K0, a1.v, b, c1);
+ ARM_DOT_K0XN0(K0, a1.v, b, c1);
#endif // M0 > 1
#if M0 > 2
- ARM_DOT_K0XN0(K0, a2.v, b, c2);
+ ARM_DOT_K0XN0(K0, a2.v, b, c2);
#endif // M0 > 2
#if M0 > 3
- ARM_DOT_K0XN0(K0, a3.v, b, c3);
+ ARM_DOT_K0XN0(K0, a3.v, b, c3);
#endif // M0 > 3
#if M0 > 4
- ARM_DOT_K0XN0(K0, a4.v, b, c4);
+ ARM_DOT_K0XN0(K0, a4.v, b, c4);
#endif // M0 > 4
#if M0 > 5
- ARM_DOT_K0XN0(K0, a5.v, b, c5);
+ ARM_DOT_K0XN0(K0, a5.v, b, c5);
#endif // M0 > 5
#if M0 > 6
- ARM_DOT_K0XN0(K0, a6.v, b, c6);
+ ARM_DOT_K0XN0(K0, a6.v, b, c6);
#endif // M0 > 6
#if M0 > 7
- ARM_DOT_K0XN0(K0, a7.v, b, c7);
+ ARM_DOT_K0XN0(K0, a7.v, b, c7);
#endif // M0 > 7
-
-#endif // LEFTOVER_K != 0
+ }
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
@@ -1635,10 +801,10 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
-#undef LEFTOVER_K
+#undef RHS_STEP_LOOP
#undef PIXEL_UNIT
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE)
#define VFMA(a, b, c) \
({ \
@@ -1717,13 +883,14 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#error "M0 not supported"
#endif // M0 not supported
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
* @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
*
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
@@ -1775,6 +942,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -1796,7 +966,10 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))
@@ -2032,9 +1205,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
@@ -2042,7 +1217,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
* could be different from the value returned by get_image_height(rhs_img).
@@ -2092,6 +1267,9 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -2113,7 +1291,10 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
@@ -2125,9 +1306,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#if defined(RHS_INTERLEAVE)
#define RHS_OFFSET_X (PIXEL_UNIT)
#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#define RHS_STEP_LOOP 1
#else // defined(RHS_INTERLEAVE)
#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
#define RHS_STEP_X (PIXEL_UNIT)
+#define RHS_STEP_LOOP (H0)
#endif // defined(RHS_INTERLEAVE)
uint x = get_global_id(0);
@@ -2342,11 +1525,12 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
-#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR)
#if defined(MIXED_PRECISION)
#if K0 == 2
@@ -2525,6 +1709,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#error "N0 value not supported"
#endif // N0 conditions
+#if defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
@@ -2581,12 +1766,14 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -2594,7 +1781,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -2605,7 +1791,10 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define LHS_BLOCK_SIZE ((K0) * (M0))
@@ -2661,7 +1850,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
- for(int i = 0; i < k; i += K0)
+ for(int i = 0; i < K; i += K0)
{
// Supported cases (M0, K0):
// 1,2 - 1,3 - 1,4 - 1,8 - 1,16
@@ -2798,8 +1987,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
@@ -2855,12 +2045,14 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -2868,7 +2060,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -2879,7 +2070,10 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
@@ -3070,7 +2264,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_TEXTURE)
#if defined(LHS_TRANSPOSE)
@@ -3182,6 +2376,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
(M0, N0, TYPE, A, B, C)
+#if defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
@@ -3236,12 +2431,14 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -3249,7 +2446,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -3260,7 +2456,10 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define LHS_BLOCK_SIZE ((K0) * (M0))
@@ -3322,7 +2521,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
__global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
__global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
- for(int i = 0; i < k; i += K0)
+ for(int i = 0; i < K; i += K0)
{
VEC_DATA_TYPE(DATA_TYPE, M0)
a0;
@@ -3562,8 +2761,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
#undef RHS_OFFSET_X
#undef RHS_STEP_X
}
+#endif // defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
@@ -3572,7 +2772,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
+ * @note The GEMM's dimensions M, N and K must be passed at runtime.
* @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
* could be different from the value returned by get_image_height(rhs_img).
@@ -3617,12 +2817,14 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -3630,7 +2832,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -3641,7 +2842,10 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
@@ -3933,13 +3137,13 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_TEXTURE)
#endif // defined(LHS_TRANSPOSE)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR)
-#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
+#if defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE)
#define VFMA(a, b, c) \
({ \
@@ -4018,14 +3222,14 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#error "M0 not supported"
#endif // M0 not supported
+#if defined(GEMM_MM_NATIVE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS matrix is NOT reshaped
* @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
*
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
- * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of K0 partial accumulations must be passed at compile time using -DK0 (e.g., -DK0=2)
* @note The number of N0 columns to process must be passed at compile time using -DN0 (e.g. -DN0=2)
@@ -4073,6 +3277,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
* @param[in] rhs_stride_z Stride of the RHS matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
@@ -4087,7 +3294,10 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
#if defined(BETA)
uint bias_stride_z,
#endif //defined(BETA)
- uint dst_stride_z
+ uint dst_stride_z,
+ const int M,
+ const int N,
+ const int K
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint lhs_cross_plane_pad
@@ -4303,7 +3513,8 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
// Store output block
STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
}
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
+#endif // defined(GEMM_MM_NATIVE)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE)
#if defined(BETA)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
@@ -4389,4 +3600,4 @@ __kernel void gemm_ma_f16(TENSOR3D_DECLARATION(src),
vstore8(out, 0, (__global half *)dst.ptr);
}
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-#endif // defined(BETA) \ No newline at end of file
+#endif // defined(BETA)
diff --git a/src/core/CL/cl_kernels/common/gemm_utils.cl b/src/core/CL/cl_kernels/common/gemm_utils.cl
new file mode 100644
index 0000000000..89c00b553c
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/gemm_utils.cl
@@ -0,0 +1,874 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
+#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
+#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
+#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
+#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
+#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
+#define CONCAT_INC(K0) INC##K0
+#define INC(K0) CONCAT_INC(K0)
+
+#if(SRC_WIDTH % K0)
+#define BOUNDARY_CONDITION_X(x, a) \
+ ({ \
+ a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
+ })
+#else // (SRC_WIDTH % K0)
+#define BOUNDARY_CONDITION_X(x, a) \
+ ({})
+#endif // (SRC_WIDTH % K0)
+
+#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \
+ ({ \
+ if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \
+ { \
+ if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
+ { \
+ LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ else \
+ { \
+ LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ } \
+ else \
+ { \
+ if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
+ { \
+ LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ else \
+ { \
+ LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ } \
+ })
+
+/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
+ * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
+ * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
+ * @note Only the following values for M0, K0 and V0 are supported:
+ * M0: 2,3,4,5,6,7,8
+ * K0: 2,3,4,8,16
+ * V0: greater than 0
+ * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ *
+ * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ */
+__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst)
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+ )
+{
+ // Block size
+#define BLOCK_SIZE ((M0) * (K0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (K0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (K0) * (V0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (K0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
+ (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
+
+ // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src_stride_z by DEPTH_GEMM3D
+
+ input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ input_ptr += z * (uint)src_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ output_ptr += z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+ // Load values from the LHS matrix
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
+
+ LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
+
+ // ---------------------------Store output values ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
+ STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+
+#if M0 == 2
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#elif M0 == 3 // M0 == 3
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#elif M0 == 4 // M0 == 4
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#elif M0 == 5 // M0 == 5
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ DATA_TYPE res1 = a4.s##i; \
+ VSTORE(4) \
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
+ })
+#elif M0 == 6 // M0 == 6
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ VEC_DATA_TYPE(DATA_TYPE, 2) \
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
+ VSTORE(4) \
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ VSTORE(2) \
+ (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
+ })
+#elif M0 == 7 // M0 == 7
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ VEC_DATA_TYPE(DATA_TYPE, 3) \
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
+ VSTORE(4) \
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ VSTORE(3) \
+ (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
+ })
+#elif M0 == 8 // M0 == 8
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#else // M0 not supported
+#error "M0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
+ * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
+ * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
+ * @note Only the following values for M0, K0 and V0 are supported:
+ * M0: 2,3,4,5,6,7,8
+ * K0: 2,3,4,8,16
+ * V0: greater than 0
+ * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ *
+ * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ */
+__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst)
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+ )
+{
+ // Block size
+#define BLOCK_SIZE ((M0) * (K0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (M0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (M0) * (V0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (M0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
+ (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
+
+ // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src_stride_z by DEPTH_GEMM3D
+
+ input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ input_ptr += z * (uint)src_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ output_ptr += z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
+
+ LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
+
+ // ---------------------------Transpose and store block -----------------------
+
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
+#if K0 > 2
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
+#endif // K0 > 2
+#if K0 > 3
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
+#endif // K0 > 3
+#if K0 > 4
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
+#endif // K0 > 4
+#if K0 > 8
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
+#endif // K0 > 8
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
+
+#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
+/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
+ * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ * @note Only the following values for K0, N0 and H0 are supported:
+ * N0: 2,3,4,8,16
+ * K0: 1,2,3,4,8,16
+ * H0: greater than 0
+ *
+ * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ // Block size
+#define BLOCK_SIZE ((K0) * (N0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (N0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (N0) * (H0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (N0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
+ x / (uint)H0)
+ * (uint)dst_stride_y)
+ + z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+
+ REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0;
+
+ // Load values from the RHS matrix
+ a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
+#if K0 > 1
+ if(y * (uint)K0 + 1 < SRC_HEIGHT)
+ {
+ a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
+ }
+#endif // K0 > 1
+#if K0 > 2
+ if(y * (uint)K0 + 2 < SRC_HEIGHT)
+ {
+ a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
+ }
+#endif // K0 > 2
+#if K0 > 3
+ if(y * (uint)K0 + 3 < SRC_HEIGHT)
+ {
+ a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+ }
+#endif // K0 > 3
+#if K0 > 4
+ if(y * (uint)K0 + 4 < SRC_HEIGHT)
+ {
+ a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
+ }
+ if(y * (uint)K0 + 5 < SRC_HEIGHT)
+ {
+ a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
+ }
+ if(y * (uint)K0 + 6 < SRC_HEIGHT)
+ {
+ a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
+ }
+ if(y * (uint)K0 + 7 < SRC_HEIGHT)
+ {
+ a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
+ }
+#endif // K0 > 4
+#if K0 > 8
+ if(y * (uint)K0 + 8 < SRC_HEIGHT)
+ {
+ a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
+ }
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
+ }
+ if(y * (uint)K0 + 10 < SRC_HEIGHT)
+ {
+ aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
+ }
+ if(y * (uint)K0 + 11 < SRC_HEIGHT)
+ {
+ aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
+ }
+ if(y * (uint)K0 + 12 < SRC_HEIGHT)
+ {
+ aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
+ }
+ if(y * (uint)K0 + 13 < SRC_HEIGHT)
+ {
+ aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
+ }
+ if(y * (uint)K0 + 14 < SRC_HEIGHT)
+ {
+ aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
+ }
+ if(y * (uint)K0 + 15 < SRC_HEIGHT)
+ {
+ aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
+ }
+#endif // K0 > 8
+
+ // ---------------------------Store output values ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
+ STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+
+#if defined(TRANSPOSE)
+/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
+ * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ * @note The option -DTRANSPOSE must passed at compile time.
+ * @note Only the following values for K0, N0 and H0 are supported:
+ * N0: 2,3,4,8,16
+ * K0: 2,3,4,8,16
+ * H0: greater than 0
+ *
+ * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ // Block size
+#define BLOCK_SIZE ((K0) * (N0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (K0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (K0) * (H0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (K0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
+ (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+ REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0;
+
+ // Load values from the RHS matrix
+ a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
+ if(y * (uint)K0 + 1 < SRC_HEIGHT)
+ {
+ a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
+ }
+#if K0 > 2
+ if(y * (uint)K0 + 2 < SRC_HEIGHT)
+ {
+ a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
+ }
+#endif // K0 > 2
+#if K0 > 3
+ if(y * (uint)K0 + 3 < SRC_HEIGHT)
+ {
+ a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+ }
+#endif // K0 > 3
+#if K0 > 4
+ if(y * (uint)K0 + 4 < SRC_HEIGHT)
+ {
+ a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
+ }
+ if(y * (uint)K0 + 5 < SRC_HEIGHT)
+ {
+ a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
+ }
+ if(y * (uint)K0 + 6 < SRC_HEIGHT)
+ {
+ a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
+ }
+ if(y * (uint)K0 + 7 < SRC_HEIGHT)
+ {
+ a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
+ }
+#endif // K0 > 4
+#if K0 > 8
+ if(y * (uint)K0 + 8 < SRC_HEIGHT)
+ {
+ a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
+ }
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
+ }
+ if(y * (uint)K0 + 10 < SRC_HEIGHT)
+ {
+ aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
+ }
+ if(y * (uint)K0 + 11 < SRC_HEIGHT)
+ {
+ aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
+ }
+ if(y * (uint)K0 + 12 < SRC_HEIGHT)
+ {
+ aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
+ }
+ if(y * (uint)K0 + 13 < SRC_HEIGHT)
+ {
+ aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
+ }
+ if(y * (uint)K0 + 14 < SRC_HEIGHT)
+ {
+ aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
+ }
+ if(y * (uint)K0 + 15 < SRC_HEIGHT)
+ {
+ aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
+ }
+#endif // K0 > 8
+
+ // ---------------------------Transpose the block ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0;
+
+#if K0 == 2
+ // This part computes the following transpositions:
+ // 2x2 -> 2x2
+ // 2x4 -> 4x2
+ // 2x8 -> 8x2
+ // 2x16 -> 16x2
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF);
+#endif // N0 > 8
+
+#elif K0 == 3 // K0 == 2
+ // This part computes the following transpositions:
+ // 3x2 -> 2x3
+ // 3x4 -> 4x3
+ // 3x8 -> 8x3
+ // 3x16 -> 16x3
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF);
+#endif // N0 > 8
+
+#elif K0 == 4 // K0 == 4
+ // This part computes the following transpositions:
+ // 4x2 -> 2x4
+ // 4x4 -> 4x4
+ // 4x8 -> 8x4
+ // 4x16 -> 16x4
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
+#endif // N0 > 8
+
+#elif K0 == 8 // K0 == 8
+ // This part computes the following transpositions:
+ // 8x2 -> 2x8
+ // 8x4 -> 4x8
+ // 8x8 -> 8x8
+ // 8x16 -> 16x8
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
+#endif // N0 > 8
+
+#elif K0 == 16 // K0 == 16
+
+ // This part computes the following transpositions:
+ // 16x2 -> 2x16
+ // 16x4 -> 4x16
+ // 16x8 -> 8x16
+ // 16x16 -> 16x16
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
+ a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
+ a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
+ a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
+ a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
+ a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
+ a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
+ a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
+ a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
+ a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
+ a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
+ a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
+ a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
+ a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
+ a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
+ a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
+ a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
+#endif // N0 > 8
+
+#else // N0 == 16
+#error "Not supported N0 value"
+#endif // N0 > 2
+
+ // ---------------------------Store the output values ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
+ STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+#endif // defined(TRANSPOSE)
+#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
diff --git a/src/core/Utils.cpp b/src/core/Utils.cpp
index b81b498ae5..930e4c7975 100644
--- a/src/core/Utils.cpp
+++ b/src/core/Utils.cpp
@@ -330,6 +330,13 @@ std::string lower_string(const std::string &val)
return res;
}
+std::string upper_string(const std::string &val)
+{
+ std::string res = val;
+ std::transform(res.begin(), res.end(), res.begin(), ::toupper);
+ return res;
+}
+
PadStrideInfo calculate_same_pad(TensorShape input_shape, TensorShape weights_shape, PadStrideInfo conv_info, DataLayout data_layout, const Size2D &dilation,
const DimensionRoundingType &rounding_type)
{
diff --git a/src/gpu/cl/ClKernelLibrary.cpp b/src/gpu/cl/ClKernelLibrary.cpp
index c47cf8ef11..f87b226a64 100644
--- a/src/gpu/cl/ClKernelLibrary.cpp
+++ b/src/gpu/cl/ClKernelLibrary.cpp
@@ -290,10 +290,10 @@ const std::map<std::string, std::string> ClKernelLibrary::_kernel_program_map =
{ "gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl" },
{ "gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl" },
{ "gemm_lc_vm_f32", "common/gemm.cl" },
- { "gemm_reshape_lhs_matrix_nt", "common/gemm.cl" },
- { "gemm_reshape_lhs_matrix_t", "common/gemm.cl" },
- { "gemm_reshape_rhs_matrix_nt", "common/gemm.cl" },
- { "gemm_reshape_rhs_matrix_t", "common/gemm.cl" },
+ { "gemm_reshape_lhs_matrix_nt", "common/gemm_utils.cl" },
+ { "gemm_reshape_lhs_matrix_t", "common/gemm_utils.cl" },
+ { "gemm_reshape_rhs_matrix_nt", "common/gemm_utils.cl" },
+ { "gemm_reshape_rhs_matrix_t", "common/gemm_utils.cl" },
{ "gemmlowp_matrix_a_reduction", "common/gemmlowp.cl" },
{ "gemmlowp_matrix_a_reduction_dot8", "common/gemmlowp.cl" },
{ "gemmlowp_matrix_b_reduction", "common/gemmlowp.cl" },
@@ -590,6 +590,10 @@ const std::map<std::string, std::string> ClKernelLibrary::_program_source_map =
#include "./cl_kernels/common/gemm.clembed"
},
{
+ "common/gemm_utils.cl",
+#include "./cl_kernels/common/gemm_utils.clembed"
+ },
+ {
"common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl",
#include "./cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.clembed"
},
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp b/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp
index af794354c3..05988997e7 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp
@@ -275,6 +275,9 @@ void ClGemmMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile
// Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
// NOTE: This might have implications on heuristics and performance
const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
+ _m = internal_m;
+ _n = gemm_info.n;
+ _k = gemm_info.k;
// Create build options
CLBuildOptions build_opts;
@@ -289,9 +292,6 @@ void ClGemmMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
- build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
- build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
- build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
@@ -312,6 +312,9 @@ void ClGemmMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile
std::string kernel_name("gemm_mm_native");
post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
+ // A macro guard to compile ONLY the kernel of interest
+ build_opts.add_option("-D" + upper_string(kernel_name));
+
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
@@ -392,11 +395,11 @@ void ClGemmMatrixMultiplyNativeKernel::run_op(ITensorPack &tensors, const Window
unsigned int idx0;
if(_add_bias)
{
- idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + (4 + _num_post_op_args);
+ idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + (7 + _num_post_op_args);
}
else
{
- idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + (3 + _num_post_op_args);
+ idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + (6 + _num_post_op_args);
}
const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
@@ -408,11 +411,11 @@ void ClGemmMatrixMultiplyNativeKernel::run_op(ITensorPack &tensors, const Window
unsigned int idx0;
if(_add_bias)
{
- idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + 4 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
+ idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + 7 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
}
else
{
- idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
+ idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + 6 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
}
const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
@@ -455,6 +458,12 @@ void ClGemmMatrixMultiplyNativeKernel::run_op(ITensorPack &tensors, const Window
const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(post_op_arg->info()->strides_in_bytes()[2]));
}
+
+ // Pass m, n and k at runtime
+ _kernel.setArg<cl_int>(idx++, _m);
+ _kernel.setArg<cl_int>(idx++, _n);
+ _kernel.setArg<cl_int>(idx++, _k);
+
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
while(window.slide_window_slice_3D(slice));
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h b/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h
index 415eb7bf3b..e478df727a 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h
@@ -81,6 +81,9 @@ private:
bool _reinterpret_output_as_3d{ false };
bool _use_dummy_work_items{ false };
bool _add_bias{ false };
+ signed int _m{ 1 };
+ signed int _n{ 1 };
+ signed int _k{ 1 };
unsigned int _num_post_op_args{ 0 }; // (EXPERIMENTAL_POST_OPS) total number of post op arguments
};
} // namespace kernels
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
index 64e99332fd..6a450b652b 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
@@ -201,7 +201,6 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
_use_dummy_work_items = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
_add_bias = src2 != nullptr;
_export_to_cl_image = rhs_info.export_to_cl_image;
- _k = gemm_info.k;
_num_post_op_args = gemm_info.post_ops.total_num_arguments();
// Check if we need to slide the matrix B
@@ -230,6 +229,9 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
+ _m = gemm_info.m;
+ _n = gemm_info.n;
+ _k = gemm_info.k;
// Create build options
CLBuildOptions build_opts;
@@ -250,9 +252,6 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
build_opts.add_option("-DRHS_HEIGHT=" + support::cpp11::to_string(src1->dimension(1)));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
build_opts.add_option("-DDATA_TYPE_ACCUMULATOR=" + (enable_mixed_precision ? get_cl_type_from_data_type(DataType::F32) : get_cl_type_from_data_type(data_type)));
- build_opts.add_option("-DM=" + support::cpp11::to_string(gemm_info.m));
- build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
- build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(lhs_info.k0));
@@ -278,6 +277,9 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
kernel_name += rhs_info.export_to_cl_image ? "_texture" : "";
post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
+ // A macro guard to compile ONLY the kernel of interest
+ build_opts.add_option("-D" + upper_string(kernel_name));
+
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
@@ -399,9 +401,6 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
add_2D_tensor_argument(idx, post_op_arg, slice);
}
- // K dimension (not used if _export_to_cl_image == true)
- _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_k));
-
// LHS stride_z
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
@@ -429,6 +428,13 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(total_cross_plane_pad));
}
+ // Pass m, n and k at runtime
+ _kernel.setArg<cl_int>(idx++, _m);
+ _kernel.setArg<cl_int>(idx++, _n);
+
+ // K dimension (not used if _export_to_cl_image == true)
+ _kernel.setArg<cl_int>(idx++, _k);
+
// Dispatch kernel
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
@@ -436,4 +442,4 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
}
} // namespace kernels
} // namespace opencl
-} // namespace arm_compute \ No newline at end of file
+} // namespace arm_compute
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
index 09160ec0d1..2d668b91a3 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
@@ -105,7 +105,9 @@ private:
bool _use_dummy_work_items{ false };
bool _add_bias{ false };
bool _export_to_cl_image{ false };
- unsigned int _k{ 1 };
+ signed int _m{ 1 };
+ signed int _n{ 1 };
+ signed int _k{ 1 };
unsigned int _num_post_op_args{ 0 }; // (EXPERIMENTAL_POST_OPS) total number of post op arguments
};
} // namespace kernels
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.cpp b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.cpp
index aa806978ef..29f9180bf4 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.cpp
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.cpp
@@ -240,7 +240,9 @@ void ClGemmMatrixMultiplyReshapedOnlyRhsKernel::configure(const CLCompileContext
// Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
const unsigned int partial_store_m0 = internal_m % internal_m0;
const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
-
+ _m = internal_m;
+ _n = gemm_info.n;
+ _k = gemm_info.k;
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
@@ -253,9 +255,6 @@ void ClGemmMatrixMultiplyReshapedOnlyRhsKernel::configure(const CLCompileContext
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
build_opts.add_option_if(rhs_info.export_to_cl_image, "-DOPENCL_IMAGE_SUPPORT");
build_opts.add_option("-DRHS_HEIGHT=" + support::cpp11::to_string(src1->dimension(1)));
- build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
- build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
- build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
@@ -286,6 +285,9 @@ void ClGemmMatrixMultiplyReshapedOnlyRhsKernel::configure(const CLCompileContext
kernel_name += rhs_info.export_to_cl_image ? "_texture" : "";
post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
+ // A macro guard to compile ONLY the kernel of interest
+ build_opts.add_option("-D" + upper_string(kernel_name));
+
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
@@ -447,6 +449,11 @@ void ClGemmMatrixMultiplyReshapedOnlyRhsKernel::run_op(ITensorPack &tensors, con
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(total_cross_plane_pad_out));
}
+ // Pass m, n and k at runtime as signed ints, to ensure results of any subractions they could be operand in, would still be signed.
+ _kernel.setArg<cl_int>(idx++, _m);
+ _kernel.setArg<cl_int>(idx++, _n);
+ _kernel.setArg<cl_int>(idx++, _k);
+
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
while(window.slide_window_slice_3D(slice));
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h
index a8f0c4c3a0..ec5878d5cc 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h
@@ -97,6 +97,9 @@ private:
bool _add_bias{ false };
bool _export_to_cl_image{ false };
bool _has_pad_y{ false };
+ signed int _m{ 1 };
+ signed int _n{ 1 };
+ signed int _k{ 1 };
unsigned int _num_post_op_args{ 0 }; // (EXPERIMENTAL_POST_OPS) total number of post op arguments
};
} // namespace kernels
diff --git a/src/gpu/cl/operators/ClGemm.cpp b/src/gpu/cl/operators/ClGemm.cpp
index 50ecb214e3..555738531a 100644
--- a/src/gpu/cl/operators/ClGemm.cpp
+++ b/src/gpu/cl/operators/ClGemm.cpp
@@ -191,7 +191,6 @@ ClGemm::ClGemm()
_mm_native_kernel(std::make_unique<ClGemmMatrixMultiplyNativeKernel>()),
_mm_reshaped_kernel(std::make_unique<ClGemmMatrixMultiplyReshapedKernel>()),
_mm_reshaped_only_rhs_kernel(std::make_unique<ClGemmMatrixMultiplyReshapedOnlyRhsKernel>()),
- _mm_reshaped_only_rhs_fallback_kernel(std::make_unique<ClGemmMatrixMultiplyReshapedOnlyRhsKernel>()),
_tmp_a(),
_tmp_b(),
_reshape_b_only_on_first_run(false),
@@ -303,7 +302,6 @@ void ClGemm::configure_reshaped_only_rhs(const CLCompileContext &compile_context
// Set the target for the kernels
_mm_reshaped_only_rhs_kernel->set_target(gpu_target);
- _mm_reshaped_only_rhs_fallback_kernel->set_target(gpu_target);
GEMMLHSMatrixInfo lhs_info{};
GEMMRHSMatrixInfo rhs_info{};
@@ -322,10 +320,6 @@ void ClGemm::configure_reshaped_only_rhs(const CLCompileContext &compile_context
kernel_info.has_pad_y = false;
_mm_reshaped_only_rhs_kernel->configure(compile_context, a, &_tmp_b, c, output, alpha, beta, lhs_info, rhs_info, kernel_info);
- // Configure matrix multiply kernel with y padding support
- kernel_info.has_pad_y = true;
- _mm_reshaped_only_rhs_fallback_kernel->configure(compile_context, a, &_tmp_b, c, output, alpha, beta, lhs_info, rhs_info, kernel_info);
-
// Request memory for RHS reshape matrix
_aux_mem[RhsReshape] = MemoryInfo(offset_int_vec(RhsReshape), _reshape_b_only_on_first_run ? MemoryLifetime::Persistent : MemoryLifetime::Temporary, _tmp_b.total_size());
}
@@ -625,7 +619,7 @@ void ClGemm::run(ITensorPack &tensors)
if(has_pad_y)
{
- CLScheduler::get().enqueue_op(*_mm_reshaped_only_rhs_fallback_kernel, gemm_reshaped_onlyrhs_pack, true);
+ ARM_COMPUTE_ERROR_ON(has_pad_y);
}
else
{
diff --git a/src/gpu/cl/operators/ClGemm.h b/src/gpu/cl/operators/ClGemm.h
index e084e53fe4..3c0cad3ca4 100644
--- a/src/gpu/cl/operators/ClGemm.h
+++ b/src/gpu/cl/operators/ClGemm.h
@@ -121,7 +121,6 @@ private:
std::unique_ptr<kernels::ClGemmMatrixMultiplyNativeKernel> _mm_native_kernel;
std::unique_ptr<kernels::ClGemmMatrixMultiplyReshapedKernel> _mm_reshaped_kernel;
std::unique_ptr<kernels::ClGemmMatrixMultiplyReshapedOnlyRhsKernel> _mm_reshaped_only_rhs_kernel;
- std::unique_ptr<kernels::ClGemmMatrixMultiplyReshapedOnlyRhsKernel> _mm_reshaped_only_rhs_fallback_kernel;
TensorInfo _tmp_a;
TensorInfo _tmp_b;
bool _reshape_b_only_on_first_run;