aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/gemm_utils.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/gemm_utils.cl')
-rw-r--r--src/core/CL/cl_kernels/common/gemm_utils.cl874
1 files changed, 874 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/common/gemm_utils.cl b/src/core/CL/cl_kernels/common/gemm_utils.cl
new file mode 100644
index 0000000000..89c00b553c
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/gemm_utils.cl
@@ -0,0 +1,874 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
+#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
+#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
+#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
+#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
+#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
+#define CONCAT_INC(K0) INC##K0
+#define INC(K0) CONCAT_INC(K0)
+
+#if(SRC_WIDTH % K0)
+#define BOUNDARY_CONDITION_X(x, a) \
+ ({ \
+ a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
+ })
+#else // (SRC_WIDTH % K0)
+#define BOUNDARY_CONDITION_X(x, a) \
+ ({})
+#endif // (SRC_WIDTH % K0)
+
+#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \
+ ({ \
+ if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \
+ { \
+ if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
+ { \
+ LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ else \
+ { \
+ LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ } \
+ else \
+ { \
+ if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
+ { \
+ LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ else \
+ { \
+ LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
+ } \
+ } \
+ })
+
+/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
+ * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
+ * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
+ * @note Only the following values for M0, K0 and V0 are supported:
+ * M0: 2,3,4,5,6,7,8
+ * K0: 2,3,4,8,16
+ * V0: greater than 0
+ * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ *
+ * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ */
+__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst)
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+ )
+{
+ // Block size
+#define BLOCK_SIZE ((M0) * (K0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (K0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (K0) * (V0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (K0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
+ (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
+
+ // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src_stride_z by DEPTH_GEMM3D
+
+ input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ input_ptr += z * (uint)src_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ output_ptr += z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+ // Load values from the LHS matrix
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
+
+ LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
+
+ // ---------------------------Store output values ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
+ STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+
+#if M0 == 2
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#elif M0 == 3 // M0 == 3
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#elif M0 == 4 // M0 == 4
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#elif M0 == 5 // M0 == 5
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ DATA_TYPE res1 = a4.s##i; \
+ VSTORE(4) \
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
+ })
+#elif M0 == 6 // M0 == 6
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ VEC_DATA_TYPE(DATA_TYPE, 2) \
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
+ VSTORE(4) \
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ VSTORE(2) \
+ (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
+ })
+#elif M0 == 7 // M0 == 7
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
+ VEC_DATA_TYPE(DATA_TYPE, 3) \
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
+ VSTORE(4) \
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ VSTORE(3) \
+ (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
+ })
+#elif M0 == 8 // M0 == 8
+#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, M0) \
+ res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
+ VSTORE(M0) \
+ (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
+ })
+#else // M0 not supported
+#error "M0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
+ * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
+ * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
+ * @note Only the following values for M0, K0 and V0 are supported:
+ * M0: 2,3,4,5,6,7,8
+ * K0: 2,3,4,8,16
+ * V0: greater than 0
+ * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ *
+ * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ */
+__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst)
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+ )
+{
+ // Block size
+#define BLOCK_SIZE ((M0) * (K0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (M0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (M0) * (V0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (M0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
+ (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
+
+ // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src_stride_z by DEPTH_GEMM3D
+
+ input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ input_ptr += z * (uint)src_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ output_ptr += z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
+
+ LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
+
+ // ---------------------------Transpose and store block -----------------------
+
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
+#if K0 > 2
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
+#endif // K0 > 2
+#if K0 > 3
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
+#endif // K0 > 3
+#if K0 > 4
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
+#endif // K0 > 4
+#if K0 > 8
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
+ TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
+#endif // K0 > 8
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
+
+#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
+/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
+ * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ * @note Only the following values for K0, N0 and H0 are supported:
+ * N0: 2,3,4,8,16
+ * K0: 1,2,3,4,8,16
+ * H0: greater than 0
+ *
+ * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ // Block size
+#define BLOCK_SIZE ((K0) * (N0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (N0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (N0) * (H0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (N0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
+ x / (uint)H0)
+ * (uint)dst_stride_y)
+ + z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+
+ REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0;
+
+ // Load values from the RHS matrix
+ a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
+#if K0 > 1
+ if(y * (uint)K0 + 1 < SRC_HEIGHT)
+ {
+ a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
+ }
+#endif // K0 > 1
+#if K0 > 2
+ if(y * (uint)K0 + 2 < SRC_HEIGHT)
+ {
+ a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
+ }
+#endif // K0 > 2
+#if K0 > 3
+ if(y * (uint)K0 + 3 < SRC_HEIGHT)
+ {
+ a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+ }
+#endif // K0 > 3
+#if K0 > 4
+ if(y * (uint)K0 + 4 < SRC_HEIGHT)
+ {
+ a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
+ }
+ if(y * (uint)K0 + 5 < SRC_HEIGHT)
+ {
+ a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
+ }
+ if(y * (uint)K0 + 6 < SRC_HEIGHT)
+ {
+ a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
+ }
+ if(y * (uint)K0 + 7 < SRC_HEIGHT)
+ {
+ a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
+ }
+#endif // K0 > 4
+#if K0 > 8
+ if(y * (uint)K0 + 8 < SRC_HEIGHT)
+ {
+ a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
+ }
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
+ }
+ if(y * (uint)K0 + 10 < SRC_HEIGHT)
+ {
+ aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
+ }
+ if(y * (uint)K0 + 11 < SRC_HEIGHT)
+ {
+ aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
+ }
+ if(y * (uint)K0 + 12 < SRC_HEIGHT)
+ {
+ aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
+ }
+ if(y * (uint)K0 + 13 < SRC_HEIGHT)
+ {
+ aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
+ }
+ if(y * (uint)K0 + 14 < SRC_HEIGHT)
+ {
+ aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
+ }
+ if(y * (uint)K0 + 15 < SRC_HEIGHT)
+ {
+ aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
+ }
+#endif // K0 > 8
+
+ // ---------------------------Store output values ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
+ STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+
+#if defined(TRANSPOSE)
+/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
+ * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ * @note The option -DTRANSPOSE must passed at compile time.
+ * @note Only the following values for K0, N0 and H0 are supported:
+ * N0: 2,3,4,8,16
+ * K0: 2,3,4,8,16
+ * H0: greater than 0
+ *
+ * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
+ * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ // Block size
+#define BLOCK_SIZE ((K0) * (N0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (K0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (K0) * (H0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (K0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
+ (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+ REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0;
+
+ // Load values from the RHS matrix
+ a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
+ if(y * (uint)K0 + 1 < SRC_HEIGHT)
+ {
+ a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
+ }
+#if K0 > 2
+ if(y * (uint)K0 + 2 < SRC_HEIGHT)
+ {
+ a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
+ }
+#endif // K0 > 2
+#if K0 > 3
+ if(y * (uint)K0 + 3 < SRC_HEIGHT)
+ {
+ a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+ }
+#endif // K0 > 3
+#if K0 > 4
+ if(y * (uint)K0 + 4 < SRC_HEIGHT)
+ {
+ a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
+ }
+ if(y * (uint)K0 + 5 < SRC_HEIGHT)
+ {
+ a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
+ }
+ if(y * (uint)K0 + 6 < SRC_HEIGHT)
+ {
+ a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
+ }
+ if(y * (uint)K0 + 7 < SRC_HEIGHT)
+ {
+ a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
+ }
+#endif // K0 > 4
+#if K0 > 8
+ if(y * (uint)K0 + 8 < SRC_HEIGHT)
+ {
+ a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
+ }
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
+ }
+ if(y * (uint)K0 + 10 < SRC_HEIGHT)
+ {
+ aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
+ }
+ if(y * (uint)K0 + 11 < SRC_HEIGHT)
+ {
+ aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
+ }
+ if(y * (uint)K0 + 12 < SRC_HEIGHT)
+ {
+ aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
+ }
+ if(y * (uint)K0 + 13 < SRC_HEIGHT)
+ {
+ aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
+ }
+ if(y * (uint)K0 + 14 < SRC_HEIGHT)
+ {
+ aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
+ }
+ if(y * (uint)K0 + 15 < SRC_HEIGHT)
+ {
+ aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
+ }
+#endif // K0 > 8
+
+ // ---------------------------Transpose the block ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0;
+
+#if K0 == 2
+ // This part computes the following transpositions:
+ // 2x2 -> 2x2
+ // 2x4 -> 4x2
+ // 2x8 -> 8x2
+ // 2x16 -> 16x2
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF);
+#endif // N0 > 8
+
+#elif K0 == 3 // K0 == 2
+ // This part computes the following transpositions:
+ // 3x2 -> 2x3
+ // 3x4 -> 4x3
+ // 3x8 -> 8x3
+ // 3x16 -> 16x3
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF);
+#endif // N0 > 8
+
+#elif K0 == 4 // K0 == 4
+ // This part computes the following transpositions:
+ // 4x2 -> 2x4
+ // 4x4 -> 4x4
+ // 4x8 -> 8x4
+ // 4x16 -> 16x4
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
+#endif // N0 > 8
+
+#elif K0 == 8 // K0 == 8
+ // This part computes the following transpositions:
+ // 8x2 -> 2x8
+ // 8x4 -> 4x8
+ // 8x8 -> 8x8
+ // 8x16 -> 16x8
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
+#endif // N0 > 8
+
+#elif K0 == 16 // K0 == 16
+
+ // This part computes the following transpositions:
+ // 16x2 -> 2x16
+ // 16x4 -> 4x16
+ // 16x8 -> 8x16
+ // 16x16 -> 16x16
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
+ a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
+ a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
+ a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
+#endif // N0 > 2
+#if N0 > 3
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
+ a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
+#endif // N0 > 3
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
+ a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
+ a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
+ a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
+ a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
+ a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
+ a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
+ a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
+ a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
+ a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
+ a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
+ a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
+ a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
+#endif // N0 > 8
+
+#else // N0 == 16
+#error "Not supported N0 value"
+#endif // N0 > 2
+
+ // ---------------------------Store the output values ------------------------------
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
+ STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+#endif // defined(TRANSPOSE)
+#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)