aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGian Marco <gianmarco.iodice@arm.com>2018-01-30 13:35:54 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:47:18 +0000
commit19835e591cb0b66a0f5000ae1505bf299e50337d (patch)
tree525ee8b233a2cefe3b2734d76fdb91093b8c2d50
parent6fa009e05ae32e64f397f54087885c3eb68f0b4b (diff)
downloadComputeLibrary-19835e591cb0b66a0f5000ae1505bf299e50337d.tar.gz
COMPMID-882 - Optimizing GEMMLowp on OpenCL reshaping matrices
This new optimization allows to achieve 36.3 % of MAC utilisation on Mate 9 @ 1GHz. The performance have been reported here https://confluence.arm.com/display/MLENG/GEMMLowp+performance%3A+ACL+18.02 Change-Id: I71b6a217068763dfdc11bbf3574ee0eb94f93679 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/118531 Reviewed-by: Anthony Barbier <anthony.barbier@arm.com> Tested-by: Jenkins <bsgcomp@arm.com>
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h10
-rw-r--r--src/core/CL/CLKernelLibrary.cpp3
-rw-r--r--src/core/CL/cl_kernels/gemm.cl54
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl409
-rw-r--r--src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp88
-rw-r--r--src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp12
-rw-r--r--src/core/CL/kernels/CLGEMMTranspose1xWKernel.cpp1
-rw-r--r--src/runtime/CL/functions/CLGEMM.cpp10
-rw-r--r--src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp82
9 files changed, 548 insertions, 121 deletions
diff --git a/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h b/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h
index 3ad3ced003..b96e978b66 100644
--- a/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -59,18 +59,20 @@ public:
* @param[in] input1 Input tensor containing the transposed1xW Matrix B. Data type supported: same as @p input0
* @param[out] output Output tensor to store the result of matrix multiplication. Data type supported: S32
* @param[in] is_interleaved_transposed (Optional) True if input0 and input1 have been reshaped respectively using @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel
+ * @param[in] reshape_info (Optional) GEMM reshape info. If is_interleaved_transposed = true, this object must contain the information to understand how the matrix A and matrix B have been reshaped
*/
- void configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, bool is_interleaved_transposed = true);
+ void configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, bool is_interleaved_transposed = true, const GEMMReshapeInfo &reshape_info = GEMMReshapeInfo());
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpMatrixMultiplyKernel
*
* @param[in] input0 Input tensor info containing the interleaved Matrix A. Data type supported: QASYMM8
* @param[in] input1 Input tensor info containing the transposed Matrix B. Data type supported: same as @p input0
* @param[in] output Output tensor info to store the result of matrix multiplication. Data type supported: S32
- * @param[in] is_interleaved_transposed (Optional) True if input0 and input1 have been reshaped respectively using @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel
+ * @param[in] is_interleaved_transposed True if input0 and input1 have been reshaped respectively using @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel
+ * @param[in] reshape_info GEMM reshape info. If is_interleaved_transposed = true, this object must contain the information to understand how the matrix A and matrix B have been reshaped
*
* @return a status
*/
- static Status validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed = true);
+ static Status validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info);
// Inherited methods overridden:
void run(const Window &window, cl::CommandQueue &queue) override;
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 0847612d21..5452b8a1be 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -237,7 +237,8 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemmlowp_matrix_b_reduction", "gemmlowp.cl" },
{ "gemmlowp_mm_bifrost", "gemmlowp.cl" },
{ "gemmlowp_mm_midgard", "gemmlowp.cl" },
- { "gemmlowp_mm_interleaved_transposed", "gemmlowp.cl" },
+ { "gemmlowp_mm_interleaved_transposed_bifrost", "gemmlowp.cl" },
+ { "gemmlowp_mm_interleaved_transposed_midgard", "gemmlowp.cl" },
{ "gemmlowp_offset_contribution", "gemmlowp.cl" },
{ "gemmlowp_output_stage_quantize_down", "gemmlowp.cl" },
{ "gemmlowp_output_stage_quantize_down_fixedpoint", "gemmlowp.cl" },
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index bad09f3c42..58a550f77d 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -29,19 +29,20 @@
#if defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH)
-#if TRANSPOSE_W == 4
-#define DATA_TYPE uint
-#elif TRANSPOSE_W == 8
-#define DATA_TYPE ushort
-#elif TRANSPOSE_W == 16
+#if ELEMENT_SIZE == 1
#define DATA_TYPE uchar
-#else // TRANSPOSE_W == 16
-#error "Transpose width not supported"
-#endif // TRANSPOSE_W
+#elif ELEMENT_SIZE == 2
+#define DATA_TYPE ushort
+#elif ELEMENT_SIZE == 4
+#define DATA_TYPE uint
+#else // ELEMENT_SIZE == 1
+#error "Element size not supported"
+#endif // ELEMENT_SIZE
/** This OpenCL kernel computes the "vector" 1xW transposition of input matrix
*
- * @attention The multiplication factor (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
+ * @note The transposition width must be passed at compile time using -DTRANSPOSE_W (i.e. -DTRANSPOSE_W)
+ * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QS8/QASYMM8/U16/S16/QS16/F16/U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -81,6 +82,9 @@ __kernel void gemm_transpose1xW(IMAGE_DECLARATION(src),
/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
*
+ * @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ *
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QS8/QASYMM8/U16/S16/QS16/F16/U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
@@ -137,7 +141,9 @@ __kernel void gemm_interleave4x4(IMAGE_DECLARATION(src),
/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
- * @attention The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -240,7 +246,9 @@ __kernel void gemm_mm_interleaved_transposed_f32_midgard(IMAGE_DECLARATION(src0)
/** This OpenCL kernel is optimized for Bifrost. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
- * @attention The number of matrix B columns and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -461,7 +469,9 @@ __kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
- * @attention The number of matrix B columns and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -566,7 +576,9 @@ __kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in 8 bit fixed point precision
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
*
- * @attention The number of matrix B columns, the optional alpha's value and fixed point position need to be passed at compile time using -DCOLS_B -DALPHA and -DFIXED_POINT_POSITION
+ * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note: ALPHA must be passed in 8 bit fixed point format
*
@@ -665,7 +677,9 @@ __kernel void gemm_mm_interleaved_transposed_qs8(IMAGE_DECLARATION(src0),
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in 16 bit fixed point precision
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
- * @attention The number of matrix B columns, the optional alpha's value and fixed point position need to be passed at compile time using -DCOLS_B -DALPHA and -DFIXED_POINT_POSITION
+ * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
+ * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note: ALPHA must be passed in 16 bit fixed point format
*
@@ -1643,7 +1657,7 @@ __kernel void gemm_mm_qs16(IMAGE_DECLARATION(src0),
#if defined(BETA)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
- * @attention The beta's value need to be passed at compile time using -DBETA
+ * @note The beta's value need to be passed at compile time using -DBETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -1680,7 +1694,7 @@ __kernel void gemm_ma_f32(IMAGE_DECLARATION(src),
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
- * @attention The beta's value need to be passed at compile time using -DBETA
+ * @note The beta's value need to be passed at compile time using -DBETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -1718,7 +1732,7 @@ __kernel void gemm_ma_f16(IMAGE_DECLARATION(src),
#if defined(FIXED_POINT_POSITION)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices in 8 bit fixed point taking into account that the second matrix might be weighted by a scalar value beta:
*
- * @attention The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
+ * @note The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
*
* @note: BETA must be passed in 8 bit fixed point format
*
@@ -1757,7 +1771,7 @@ __kernel void gemm_ma_qs8(IMAGE_DECLARATION(src),
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices in 16 bit fixed point taking into account that the second matrix might be weighted by a scalar value beta:
*
- * @attention The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
+ * @note The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
*
* @note: BETA must be passed in 16 bit fixed point format
*
@@ -1799,9 +1813,9 @@ __kernel void gemm_ma_qs16(IMAGE_DECLARATION(src),
#if defined(WIDTH_VECTOR_A)
/** This OpenCL kernel computes the vector by matrix multiplication between each row of A (src0) and matrix B (src1) used for locally connected layer
*
- * @attention The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
+ * @note The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
*
- * @attention The input A and matrix B must not be reshaped
+ * @note The input A and matrix B must not be reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index d724600cdd..5e144d73af 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -24,11 +24,13 @@
#include "helpers.h"
#include "helpers_asymm.h"
-#if defined(COLS_B)
+#if defined(COLS_B) && defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(TRANSPOSE1XW_WIDTH_STEP)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
+ * Matrix A and matrix B must be reshaped respectively with @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel before running the matrix multiplication
*
- * @attention The number of matrix B columns needs to be passed at compile time using -DCOLS_B
+ * @note The number of matrix B columns needs to be passed at compile time using -DCOLS_B: e.g. -DCOLS_B=1024
+ * @note The transposition width step (mult_transpose1xW_width * 4) must be passed at compile time using -DTRANSPOSE1XW_WIDTH_STEP (i.e. -DTRANSPOSE1XW_WIDTH_STEP=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
@@ -49,69 +51,370 @@
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
-__kernel void gemmlowp_mm_interleaved_transposed(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
- IMAGE_DECLARATION(dst))
+__kernel void gemmlowp_mm_interleaved_transposed_midgard(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
{
- // src_addr.s0 = address of matrix A
- // src_addr.s1 = address of matrix B
- // Compute address for matrix A and B
- int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
- (src1_stride_y));
+ int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
+ int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
+ const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
- // Add offset_first_element_in_bytes
- src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ __global uchar *src_addr_a = (__global uchar *)(src0_ptr + y * src0_stride_y + src0_offset_first_element_in_bytes);
+ __global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
// Compute end row address for matrix B
- int end_row_mtx_b = src_addr.s1 + COLS_B;
+ __global uchar *src_end_addr_b = src_addr_b + COLS_B;
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
// Reset accumulators
- int16 c00 = 0;
- int16 c10 = 0;
- int16 c20 = 0;
- int16 c30 = 0;
+ int4 c00 = 0;
+ int4 c10 = 0;
+ int4 c20 = 0;
+ int4 c30 = 0;
- for(; src_addr.s1 <= (end_row_mtx_b - 32); src_addr += (int2)(8, 32))
+ for(; src_addr_b <= (src_end_addr_b - (int)(8 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * TRANSPOSE1XW_WIDTH_STEP)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
- int8 a0 = convert_int8(vload8(0, ((__global uchar *)src0_ptr) + src_addr.s0));
- int16 b0 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
+ int4 a0 = convert_int4(vload4(0, src_addr_a));
+ int4 b0 = convert_int4(vload4(0, src_addr_b));
- c00 += (int16)a0.s0 * b0;
- c10 += (int16)a0.s1 * b0;
- c20 += (int16)a0.s2 * b0;
- c30 += (int16)a0.s3 * b0;
+ c00 += (int4)a0.s0 * b0;
+ c10 += (int4)a0.s1 * b0;
+ c20 += (int4)a0.s2 * b0;
+ c30 += (int4)a0.s3 * b0;
+
+ a0 = convert_int4(vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT));
+ b0 = convert_int4(vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP));
+
+ c00 += (int4)a0.s0 * b0;
+ c10 += (int4)a0.s1 * b0;
+ c20 += (int4)a0.s2 * b0;
+ c30 += (int4)a0.s3 * b0;
+ }
- int16 b1 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1 + 16));
+ for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ int4 a0 = convert_int4(vload4(0, src_addr_a));
+ int4 b0 = convert_int4(vload4(0, src_addr_b));
- c00 += (int16)a0.s4 * b1;
- c10 += (int16)a0.s5 * b1;
- c20 += (int16)a0.s6 * b1;
- c30 += (int16)a0.s7 * b1;
+ c00 += (int4)a0.s0 * b0;
+ c10 += (int4)a0.s1 * b0;
+ c20 += (int4)a0.s2 * b0;
+ c30 += (int4)a0.s3 * b0;
}
- for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 16))
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Store 4x4 block
+ vstore4(c00, 0, (__global int *)(offset(&dst, 0, 0)));
+ vstore4(c10, 0, (__global int *)(offset(&dst, 0, 1)));
+ vstore4(c20, 0, (__global int *)(offset(&dst, 0, 2)));
+ vstore4(c30, 0, (__global int *)(offset(&dst, 0, 3)));
+}
+
+/** This OpenCL kernel is optimized for Bifrost and computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref CLGEMMInterleave4x4Kernel and @ref CLGEMMTranspose1xWKernel before running the matrix multiplication
+ *
+ * @attention The number of matrix B columns needs to be passed at compile time using -DCOLS_B
+ * @note The transposition width step (mult_transpose1xW_width * 4) must be passed at compile time using -DTRANSPOSE1XW_WIDTH_STEP (i.e. -DTRANSPOSE1XW_WIDTH_STEP=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemmlowp_mm_interleaved_transposed_bifrost(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ int x = get_global_id(0) / TRANSPOSE1XW_WIDTH_STEP;
+ int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
+ const int offset_row_b = (get_global_id(0) % TRANSPOSE1XW_WIDTH_STEP) * 4;
+
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ __global uchar *src_addr_a = (__global uchar *)(src0_ptr + y * src0_stride_y + src0_offset_first_element_in_bytes);
+ __global uchar *src_addr_b = (__global uchar *)(src1_ptr + x * src1_stride_y + src1_offset_first_element_in_bytes);
+
+ // Compute end row address for matrix B
+ __global uchar *src_end_addr_b = src_addr_b + COLS_B;
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
+
+ // Reset accumulators
+ uint c00 = 0;
+ uint c01 = 0;
+ uint c02 = 0;
+ uint c03 = 0;
+ uint c10 = 0;
+ uint c11 = 0;
+ uint c12 = 0;
+ uint c13 = 0;
+ uint c20 = 0;
+ uint c21 = 0;
+ uint c22 = 0;
+ uint c23 = 0;
+ uint c30 = 0;
+ uint c31 = 0;
+ uint c32 = 0;
+ uint c33 = 0;
+
+#if MULT_INTERLEAVE4X4_HEIGHT == 1
+ for(; src_addr_b <= (src_end_addr_b - (int)(32 * TRANSPOSE1XW_WIDTH_STEP)); src_addr_a += (32 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (32 * TRANSPOSE1XW_WIDTH_STEP))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
- int4 a0 = convert_int4(vload4(0, ((__global uchar *)src0_ptr) + src_addr.s0));
- int16 b0 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
+ uchar16 a0 = vload16(0, src_addr_a);
+ uchar4 b0 = vload4(0, src_addr_b);
+
+ c00 += (ushort)a0.s0 * b0.s0;
+ c01 += (ushort)a0.s0 * b0.s1;
+ c02 += (ushort)a0.s0 * b0.s2;
+ c03 += (ushort)a0.s0 * b0.s3;
+
+ c10 += (ushort)a0.s1 * b0.s0;
+ c11 += (ushort)a0.s1 * b0.s1;
+ c12 += (ushort)a0.s1 * b0.s2;
+ c13 += (ushort)a0.s1 * b0.s3;
+
+ c20 += (ushort)a0.s2 * b0.s0;
+ c21 += (ushort)a0.s2 * b0.s1;
+ c22 += (ushort)a0.s2 * b0.s2;
+ c23 += (ushort)a0.s2 * b0.s3;
+
+ c30 += (ushort)a0.s3 * b0.s0;
+ c31 += (ushort)a0.s3 * b0.s1;
+ c32 += (ushort)a0.s3 * b0.s2;
+ c33 += (ushort)a0.s3 * b0.s3;
+
+ // Load values from matrix B (transposed)
+ b0 = vload4(0, src_addr_b + 4 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.s4 * b0.s0;
+ c01 += (ushort)a0.s4 * b0.s1;
+ c02 += (ushort)a0.s4 * b0.s2;
+ c03 += (ushort)a0.s4 * b0.s3;
+
+ c10 += (ushort)a0.s5 * b0.s0;
+ c11 += (ushort)a0.s5 * b0.s1;
+ c12 += (ushort)a0.s5 * b0.s2;
+ c13 += (ushort)a0.s5 * b0.s3;
+
+ c20 += (ushort)a0.s6 * b0.s0;
+ c21 += (ushort)a0.s6 * b0.s1;
+ c22 += (ushort)a0.s6 * b0.s2;
+ c23 += (ushort)a0.s6 * b0.s3;
+
+ c30 += (ushort)a0.s7 * b0.s0;
+ c31 += (ushort)a0.s7 * b0.s1;
+ c32 += (ushort)a0.s7 * b0.s2;
+ c33 += (ushort)a0.s7 * b0.s3;
+
+ // Load values from matrix B (transposed)
+ b0 = vload4(0, src_addr_b + 8 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.s8 * b0.s0;
+ c01 += (ushort)a0.s8 * b0.s1;
+ c02 += (ushort)a0.s8 * b0.s2;
+ c03 += (ushort)a0.s8 * b0.s3;
+
+ c10 += (ushort)a0.s9 * b0.s0;
+ c11 += (ushort)a0.s9 * b0.s1;
+ c12 += (ushort)a0.s9 * b0.s2;
+ c13 += (ushort)a0.s9 * b0.s3;
+
+ c20 += (ushort)a0.sA * b0.s0;
+ c21 += (ushort)a0.sA * b0.s1;
+ c22 += (ushort)a0.sA * b0.s2;
+ c23 += (ushort)a0.sA * b0.s3;
+
+ c30 += (ushort)a0.sB * b0.s0;
+ c31 += (ushort)a0.sB * b0.s1;
+ c32 += (ushort)a0.sB * b0.s2;
+ c33 += (ushort)a0.sB * b0.s3;
+
+ // Load values from matrix B (transposed)
+ b0 = vload4(0, src_addr_b + 12 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.sC * b0.s0;
+ c01 += (ushort)a0.sC * b0.s1;
+ c02 += (ushort)a0.sC * b0.s2;
+ c03 += (ushort)a0.sC * b0.s3;
+
+ c10 += (ushort)a0.sD * b0.s0;
+ c11 += (ushort)a0.sD * b0.s1;
+ c12 += (ushort)a0.sD * b0.s2;
+ c13 += (ushort)a0.sD * b0.s3;
+
+ c20 += (ushort)a0.sE * b0.s0;
+ c21 += (ushort)a0.sE * b0.s1;
+ c22 += (ushort)a0.sE * b0.s2;
+ c23 += (ushort)a0.sE * b0.s3;
+
+ c30 += (ushort)a0.sF * b0.s0;
+ c31 += (ushort)a0.sF * b0.s1;
+ c32 += (ushort)a0.sF * b0.s2;
+ c33 += (ushort)a0.sF * b0.s3;
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload16(0, src_addr_a + 16);
+ b0 = vload4(0, src_addr_b + 16 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.s0 * b0.s0;
+ c01 += (ushort)a0.s0 * b0.s1;
+ c02 += (ushort)a0.s0 * b0.s2;
+ c03 += (ushort)a0.s0 * b0.s3;
+
+ c10 += (ushort)a0.s1 * b0.s0;
+ c11 += (ushort)a0.s1 * b0.s1;
+ c12 += (ushort)a0.s1 * b0.s2;
+ c13 += (ushort)a0.s1 * b0.s3;
+
+ c20 += (ushort)a0.s2 * b0.s0;
+ c21 += (ushort)a0.s2 * b0.s1;
+ c22 += (ushort)a0.s2 * b0.s2;
+ c23 += (ushort)a0.s2 * b0.s3;
+
+ c30 += (ushort)a0.s3 * b0.s0;
+ c31 += (ushort)a0.s3 * b0.s1;
+ c32 += (ushort)a0.s3 * b0.s2;
+ c33 += (ushort)a0.s3 * b0.s3;
+
+ // Load values from matrix B (transposed)
+ b0 = vload4(0, src_addr_b + 20 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.s4 * b0.s0;
+ c01 += (ushort)a0.s4 * b0.s1;
+ c02 += (ushort)a0.s4 * b0.s2;
+ c03 += (ushort)a0.s4 * b0.s3;
+
+ c10 += (ushort)a0.s5 * b0.s0;
+ c11 += (ushort)a0.s5 * b0.s1;
+ c12 += (ushort)a0.s5 * b0.s2;
+ c13 += (ushort)a0.s5 * b0.s3;
+
+ c20 += (ushort)a0.s6 * b0.s0;
+ c21 += (ushort)a0.s6 * b0.s1;
+ c22 += (ushort)a0.s6 * b0.s2;
+ c23 += (ushort)a0.s6 * b0.s3;
+
+ c30 += (ushort)a0.s7 * b0.s0;
+ c31 += (ushort)a0.s7 * b0.s1;
+ c32 += (ushort)a0.s7 * b0.s2;
+ c33 += (ushort)a0.s7 * b0.s3;
+
+ // Load values from matrix B (transposed)
+ b0 = vload4(0, src_addr_b + 24 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.s8 * b0.s0;
+ c01 += (ushort)a0.s8 * b0.s1;
+ c02 += (ushort)a0.s8 * b0.s2;
+ c03 += (ushort)a0.s8 * b0.s3;
+
+ c10 += (ushort)a0.s9 * b0.s0;
+ c11 += (ushort)a0.s9 * b0.s1;
+ c12 += (ushort)a0.s9 * b0.s2;
+ c13 += (ushort)a0.s9 * b0.s3;
+
+ c20 += (ushort)a0.sA * b0.s0;
+ c21 += (ushort)a0.sA * b0.s1;
+ c22 += (ushort)a0.sA * b0.s2;
+ c23 += (ushort)a0.sA * b0.s3;
+
+ c30 += (ushort)a0.sB * b0.s0;
+ c31 += (ushort)a0.sB * b0.s1;
+ c32 += (ushort)a0.sB * b0.s2;
+ c33 += (ushort)a0.sB * b0.s3;
+
+ // Load values from matrix B (transposed)
+ b0 = vload4(0, src_addr_b + 28 * TRANSPOSE1XW_WIDTH_STEP);
+
+ c00 += (ushort)a0.sC * b0.s0;
+ c01 += (ushort)a0.sC * b0.s1;
+ c02 += (ushort)a0.sC * b0.s2;
+ c03 += (ushort)a0.sC * b0.s3;
+
+ c10 += (ushort)a0.sD * b0.s0;
+ c11 += (ushort)a0.sD * b0.s1;
+ c12 += (ushort)a0.sD * b0.s2;
+ c13 += (ushort)a0.sD * b0.s3;
+
+ c20 += (ushort)a0.sE * b0.s0;
+ c21 += (ushort)a0.sE * b0.s1;
+ c22 += (ushort)a0.sE * b0.s2;
+ c23 += (ushort)a0.sE * b0.s3;
+
+ c30 += (ushort)a0.sF * b0.s0;
+ c31 += (ushort)a0.sF * b0.s1;
+ c32 += (ushort)a0.sF * b0.s2;
+ c33 += (ushort)a0.sF * b0.s3;
+ }
+#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
- c00 += (int16)a0.s0 * b0;
- c10 += (int16)a0.s1 * b0;
- c20 += (int16)a0.s2 * b0;
- c30 += (int16)a0.s3 * b0;
+ for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * TRANSPOSE1XW_WIDTH_STEP))
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ uchar4 a0 = vload4(0, src_addr_a);
+ uchar4 b0 = vload4(0, src_addr_b);
+
+ c00 += (ushort)a0.s0 * b0.s0;
+ c01 += (ushort)a0.s0 * b0.s1;
+ c02 += (ushort)a0.s0 * b0.s2;
+ c03 += (ushort)a0.s0 * b0.s3;
+
+ c10 += (ushort)a0.s1 * b0.s0;
+ c11 += (ushort)a0.s1 * b0.s1;
+ c12 += (ushort)a0.s1 * b0.s2;
+ c13 += (ushort)a0.s1 * b0.s3;
+
+ c20 += (ushort)a0.s2 * b0.s0;
+ c21 += (ushort)a0.s2 * b0.s1;
+ c22 += (ushort)a0.s2 * b0.s2;
+ c23 += (ushort)a0.s2 * b0.s3;
+
+ c30 += (ushort)a0.s3 * b0.s0;
+ c31 += (ushort)a0.s3 * b0.s1;
+ c32 += (ushort)a0.s3 * b0.s2;
+ c33 += (ushort)a0.s3 * b0.s3;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
- // Store 4x16 block
- vstore16(c00, 0, (__global int *)(offset(&dst, 0, 0)));
- vstore16(c10, 0, (__global int *)(offset(&dst, 0, 1)));
- vstore16(c20, 0, (__global int *)(offset(&dst, 0, 2)));
- vstore16(c30, 0, (__global int *)(offset(&dst, 0, 3)));
+ // Store 4x4 block
+ vstore4((int4)(c00, c01, c02, c03), 0, (__global int *)(offset(&dst, 0, 0)));
+ vstore4((int4)(c10, c11, c12, c13), 0, (__global int *)(offset(&dst, 0, 1)));
+ vstore4((int4)(c20, c21, c22, c23), 0, (__global int *)(offset(&dst, 0, 2)));
+ vstore4((int4)(c30, c31, c32, c33), 0, (__global int *)(offset(&dst, 0, 3)));
}
-#endif // defined(COLS_B)
+#endif // defined(COLS_B) && defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(TRANSPOSE1XW_WIDTH_STEP)
#if defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
#define VECTOR_UCHAR VEC_DATA_TYPE(uchar, NUM_ELEMS_PROCESSED_PER_THREAD_X)
@@ -788,39 +1091,39 @@ __kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
{
Tensor3D mm_result = CONVERT_TO_TENSOR3D_STRUCT(mm_result);
- int16 a_offset_s32 = (int16)0;
- int16 b_offset_s32 = (int16)0;
+ int4 a_offset_s32 = (int4)0;
+ int4 b_offset_s32 = (int4)0;
#if defined(A_OFFSET)
Image sum_col = CONVERT_TO_IMAGE_STRUCT(sum_col);
// Compute the offset contribution due to A_OFFSET
#if defined(SUM_COL_HAS_BATCHES)
- a_offset_s32 = vload16(0, (__global int *)(sum_col.ptr + get_global_id(2) * sum_col_stride_y));
+ a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr + get_global_id(2) * sum_col_stride_y));
#else // defined(MATRIX_B_HAS_BATCHES)
- a_offset_s32 = vload16(0, (__global int *)(sum_col.ptr));
+ a_offset_s32 = vload4(0, (__global int *)(sum_col.ptr));
#endif // defined(MATRIX_B_HAS_BATCHES)
- a_offset_s32 *= (int16)A_OFFSET;
+ a_offset_s32 *= (int4)A_OFFSET;
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
Image sum_row = CONVERT_TO_IMAGE_STRUCT(sum_row);
// Compute the offset contribution due to B_OFFSET
- b_offset_s32 = (int16) * (((__global int *)(sum_row.ptr + get_global_id(2) * sum_row_stride_y)) + get_global_id(1));
- b_offset_s32 *= (int16)B_OFFSET;
+ b_offset_s32 = (int4) * (((__global int *)(sum_row.ptr + get_global_id(2) * sum_row_stride_y)) + get_global_id(1));
+ b_offset_s32 *= (int4)B_OFFSET;
#endif // defined(B_OFFSET)
- const int16 offset_term_s32 = (int16)K_OFFSET + a_offset_s32 + b_offset_s32;
+ const int4 offset_term_s32 = (int4)K_OFFSET + a_offset_s32 + b_offset_s32;
- int16 in_s32 = vload16(0, (__global int *)mm_result.ptr);
+ int4 in_s32 = vload4(0, (__global int *)mm_result.ptr);
// Add the offset terms to GEMM's result
in_s32 += offset_term_s32;
// Store the result with the offset contribution
- vstore16(in_s32, 0, (__global int *)mm_result.ptr);
+ vstore4(in_s32, 0, (__global int *)mm_result.ptr);
}
#endif // defined(K_OFFSET)
diff --git a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
index 2f96724210..ae498ec8a7 100644
--- a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
@@ -24,6 +24,7 @@
#include "arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
@@ -34,6 +35,7 @@
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"
#include <cstddef>
@@ -41,6 +43,7 @@
#include <tuple>
using namespace arm_compute;
+using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
@@ -51,14 +54,53 @@ namespace
{
using ElementsProcessed = Steps;
-Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed)
+Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
+
if(!is_interleaved_transposed)
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));
+
+ if(output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
+ ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
+ }
+ }
+ else
+ {
+ const int m = reshape_info.m();
+ const int n = reshape_info.n();
+ const int k = reshape_info.k();
+ const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
+ const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
+
+ TensorShape tensor_shape0{ input0->tensor_shape() };
+ tensor_shape0.set(0, k);
+ tensor_shape0.set(1, m);
+
+ TensorShape tensor_shape1{ input1->tensor_shape() };
+ tensor_shape1.set(0, n);
+ tensor_shape1.set(1, k);
+
+ const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
+ const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
+
+ const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_interleaved_shape(tensor_info0, mult_interleave4x4_height));
+ const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width));
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
+
+ if(output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
+ ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
+ }
}
return Status{};
@@ -76,16 +118,14 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITe
// Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
if(is_interleaved_transposed)
{
- // Configure window
- num_elems_processed_per_iteration_x = 16;
- num_elems_processed_per_iteration_y = 4;
- constexpr unsigned int num_elems_read_per_iteration_input0 = 4;
- constexpr unsigned int num_elems_read_per_iteration_input1 = 16;
+ // Configure kernel window
+ num_elems_processed_per_iteration_x = 4;
+ num_elems_processed_per_iteration_y = 4;
win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
- AccessWindowRectangle input0_access(input0, 0, 0, num_elems_read_per_iteration_input0, 1);
- AccessWindowRectangle input1_access(input1, 0, 0, num_elems_read_per_iteration_input1, 1);
+ AccessWindowRectangle input0_access(input0, 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f);
+ AccessWindowTranspose input1_access(input1, 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f);
AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
window_changed = update_window_and_padding(win, input0_access, input1_access, output_access);
@@ -122,10 +162,18 @@ CLGEMMLowpMatrixMultiplyKernel::CLGEMMLowpMatrixMultiplyKernel()
{
}
-void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, bool is_interleaved_transposed)
+void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed));
+
+ // Output tensor auto inizialitation if not yet initialized
+ TensorShape tensor_shape{ input0->info()->tensor_shape() };
+ tensor_shape.set(0, is_interleaved_transposed ? reshape_info.n() : input1->info()->dimension(0));
+ tensor_shape.set(1, is_interleaved_transposed ? reshape_info.m() : input0->info()->dimension(1));
+
+ auto_init_if_empty(*output->info(), tensor_shape, 1, DataType::S32, 1, QuantizationInfo());
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info));
_input0 = input0;
_input1 = input1;
@@ -146,8 +194,18 @@ void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const IC
std::string kernel_name(" ");
if(is_interleaved_transposed)
{
+ const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
+ const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
+
+ // Note: The computation tile has the x dimension equal to 4 which is less than the transpose_width (16)
+ // In order to access correctly the elements from the transposed matrix B, we need to pass
+ // the correct step which is calculated as (16 * mult_transpose1xW_width) / 4)
+
build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(input1->info()->dimension(0)));
- kernel_name = "gemmlowp_mm_interleaved_transposed";
+ build_opts.add_option("-DTRANSPOSE1XW_WIDTH_STEP=" + support::cpp11::to_string(4 * mult_transpose1xW_width));
+ build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));
+
+ kernel_name = "gemmlowp_mm_interleaved_transposed_" + string_from_target(arch_target);
}
else
{
@@ -171,10 +229,10 @@ void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const IC
_config_id += (is_interleaved_transposed ? support::cpp11::to_string(input1->info()->dimension(0)) : support::cpp11::to_string(input1->info()->dimension(1)));
}
-Status CLGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed)
+Status CLGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
ElementsProcessed num_elements_processed{};
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, is_interleaved_transposed));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, is_interleaved_transposed, reshape_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
input1->clone().get(),
output->clone().get(),
diff --git a/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp b/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp
index d05939fcf5..221a1566b9 100644
--- a/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -91,7 +91,7 @@ Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vecto
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row,
int32_t a_offset, int32_t b_offset)
{
- constexpr unsigned int num_elems_processed_per_iteration = 16;
+ constexpr unsigned int num_elems_processed_per_iteration = 4;
bool window_changed = false;
// Configure kernel window
@@ -160,6 +160,14 @@ void CLGEMMLowpOffsetContributionKernel::configure(ICLTensor *mm_result, const I
a_offset, b_offset); // NOLINT
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure(win_config.second);
+
+ // Set config_id for enabling LWS tuning
+ _config_id = "gemmlowp_offset_contribution_";
+ _config_id += support::cpp11::to_string(mm_result->info()->dimension(0));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(mm_result->info()->dimension(1));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(mm_result->info()->dimension(2));
}
Status CLGEMMLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
diff --git a/src/core/CL/kernels/CLGEMMTranspose1xWKernel.cpp b/src/core/CL/kernels/CLGEMMTranspose1xWKernel.cpp
index 63aed6df32..24d218760e 100644
--- a/src/core/CL/kernels/CLGEMMTranspose1xWKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMTranspose1xWKernel.cpp
@@ -113,6 +113,7 @@ void CLGEMMTranspose1xWKernel::configure(const ICLTensor *input, ICLTensor *outp
// Create build options
CLBuildOptions build_opts;
+ build_opts.add_option("-DELEMENT_SIZE=" + support::cpp11::to_string(input->info()->element_size()));
build_opts.add_option("-DTRANSPOSE_W=" + support::cpp11::to_string(num_elems_processed_per_iteration));
build_opts.add_option("-DMULT_TRANSPOSE1XW_WIDTH=" + support::cpp11::to_string(mult_transpose1xW_width));
diff --git a/src/runtime/CL/functions/CLGEMM.cpp b/src/runtime/CL/functions/CLGEMM.cpp
index a09849ab93..f02eb169b7 100644
--- a/src/runtime/CL/functions/CLGEMM.cpp
+++ b/src/runtime/CL/functions/CLGEMM.cpp
@@ -50,7 +50,7 @@ inline bool is_interleaved_transposed(int m, int n, int k, DataType data_type, b
if(k > 256 && m > 4 && data_type == DataType::F32 && reshape_b_only_on_first_run)
{
const float scale = k < 1024 ? 2.0f : 2.5f;
- flag = scale * n > 1.66f * n + 38.4f;
+ flag = (scale * n) > ((1.66f * n) + 38.4f);
}
else
{
@@ -122,6 +122,10 @@ void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
+ // Manage intermediate buffers
+ _memory_group.manage(&_tmp_a);
+ _memory_group.manage(&_tmp_b);
+
// _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel
// Configure interleave kernel
@@ -129,10 +133,6 @@ void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *
// Configure transpose kernel
_transpose_kernel.configure(b, &_tmp_b, mult_transpose1xW_width);
-
- // Manage intermediate buffers
- _memory_group.manage(&_tmp_a);
- _memory_group.manage(&_tmp_b);
}
_mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height));
diff --git a/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp b/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
index 5f886a02c6..c688299d4f 100644
--- a/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
+++ b/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
@@ -35,6 +35,29 @@
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
+namespace
+{
+inline bool is_interleaved_transposed(int m, int n, int k, bool reshape_b_only_on_first_run, GPUTarget gpu_target)
+{
+ bool flag = true;
+
+ if(gpu_target == GPUTarget::BIFROST)
+ {
+ // COMPMID-852
+ if(k > 256 && m > 4 && reshape_b_only_on_first_run)
+ {
+ flag = ((0.72f + n * 0.10766f) < (n * 0.1284f));
+ }
+ else
+ {
+ flag = false;
+ }
+ }
+
+ return flag;
+}
+} // namespace
+
CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _mm_kernel(), _mtx_a_reshape_kernel(), _mtx_b_reshape_kernel(), _mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(), _offset_contribution_kernel(),
_vector_sum_col(), _vector_sum_row(), _tmp_a(), _tmp_b(), _a_offset(0), _b_offset(0), _is_interleaved_transposed(true), _is_first_run(true), _reshape_b_only_on_first_run(false)
@@ -51,36 +74,45 @@ void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor
_a_offset = a->info()->quantization_info().offset;
_b_offset = b->info()->quantization_info().offset;
- // If the input tensor has less than 16 rows, we run a special version of GEMMLowp without reshaping the input tensors
- _is_interleaved_transposed = (a->info()->dimension(1)) > 16 && (CLScheduler::get().target() != GPUTarget::BIFROST);
+ // Get the GPU target
+ const GPUTarget gpu_target = CLScheduler::get().target();
- // Set the target for the matrix multiply kernel
- _mm_kernel.set_target(CLScheduler::get().target());
+ // Set the target for the kernels
+ _mtx_a_reshape_kernel.set_target(gpu_target);
+ _mm_kernel.set_target(gpu_target);
const ICLTensor *matrix_a = a;
const ICLTensor *matrix_b = b;
+ // Arguments used by GEMMReshapeInfo
+ // If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
+ // in order to know how the matrices have been reshaped
+ const int m = a->info()->dimension(1);
+ const int n = b->info()->dimension(0);
+ const int k = a->info()->dimension(0);
+ constexpr int mult_transpose1xW_width = 1;
+ constexpr int mult_interleave4x4_height = 1;
+
+ // Check if we need to reshape the matrix A and matrix B
+ _is_interleaved_transposed = is_interleaved_transposed(m, n, k, _reshape_b_only_on_first_run, gpu_target);
+
if(_is_interleaved_transposed)
{
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
- TensorInfo info_a(compute_interleaved_shape(*a->info()), 1, a->info()->data_type());
- TensorInfo info_b(compute_transpose1xW_shape(*b->info()), 1, b->info()->data_type());
- _tmp_a.allocator()->init(info_a);
- _tmp_b.allocator()->init(info_b);
_memory_group.manage(&_tmp_a);
_memory_group.manage(&_tmp_b);
// Configure interleave kernel
- _mtx_a_reshape_kernel.configure(a, &_tmp_a);
+ _mtx_a_reshape_kernel.configure(a, &_tmp_a, mult_interleave4x4_height);
// Configure transpose kernel
- _mtx_b_reshape_kernel.configure(b, &_tmp_b);
+ _mtx_b_reshape_kernel.configure(b, &_tmp_b, mult_transpose1xW_width);
}
// Configure matrix multiply kernel
- _mm_kernel.configure(matrix_a, matrix_b, output, _is_interleaved_transposed);
+ _mm_kernel.configure(matrix_a, matrix_b, output, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height));
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
@@ -139,22 +171,30 @@ Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITenso
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
- int32_t a_offset = a->quantization_info().offset;
- int32_t b_offset = b->quantization_info().offset;
- bool is_interleaved_transposed = (a->dimension(1)) > 16 && (CLScheduler::get().target() != GPUTarget::BIFROST);
+ int32_t a_offset = a->quantization_info().offset;
+ int32_t b_offset = b->quantization_info().offset;
+
+ const int m = a->dimension(1);
+ const int n = b->dimension(0);
+ const int k = a->dimension(0);
+ constexpr int mult_transpose1xW_width = 1;
+ constexpr int mult_interleave4x4_height = 1;
+ const GEMMReshapeInfo reshape_info(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height);
+
+ bool reshape_matrices = is_interleaved_transposed(m, n, k, gemm_info.reshape_b_only_on_first_run(), CLScheduler::get().target());
- if(is_interleaved_transposed)
+ if(reshape_matrices)
{
- TensorInfo info_a(compute_interleaved_shape(*a), 1, a->data_type());
- TensorInfo info_b(compute_transpose1xW_shape(*b), 1, b->data_type());
+ TensorInfo info_a(compute_interleaved_shape(*a, mult_interleave4x4_height), 1, a->data_type());
+ TensorInfo info_b(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width), 1, b->data_type());
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &info_a, 1));
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &info_b, 1));
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(&info_a, &info_b, output));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &info_a, mult_interleave4x4_height));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &info_b, mult_transpose1xW_width));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(&info_a, &info_b, output, reshape_matrices, reshape_info));
}
else
{
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(a, b, output));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(a, b, output, reshape_matrices, reshape_info));
}
TensorInfo info_vector_sum_col, info_vector_sum_row;