aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.cpp
blob: 5f886a02c6c9ef8c2d1ed2dfa693f235d874f384 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"

#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"

using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;

CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _mm_kernel(), _mtx_a_reshape_kernel(), _mtx_b_reshape_kernel(), _mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(), _offset_contribution_kernel(),
      _vector_sum_col(), _vector_sum_row(), _tmp_a(), _tmp_b(), _a_offset(0), _b_offset(0), _is_interleaved_transposed(true), _is_first_run(true), _reshape_b_only_on_first_run(false)
{
}

void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, ICLTensor *output, const GEMMInfo &gemm_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
    ARM_COMPUTE_UNUSED(gemm_info);
    ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), output->info(), gemm_info));

    _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
    _a_offset                    = a->info()->quantization_info().offset;
    _b_offset                    = b->info()->quantization_info().offset;

    // If the input tensor has less than 16 rows, we run a special version of GEMMLowp without reshaping the input tensors
    _is_interleaved_transposed = (a->info()->dimension(1)) > 16 && (CLScheduler::get().target() != GPUTarget::BIFROST);

    // Set the target for the matrix multiply kernel
    _mm_kernel.set_target(CLScheduler::get().target());

    const ICLTensor *matrix_a = a;
    const ICLTensor *matrix_b = b;

    if(_is_interleaved_transposed)
    {
        matrix_a = &_tmp_a;
        matrix_b = &_tmp_b;

        TensorInfo info_a(compute_interleaved_shape(*a->info()), 1, a->info()->data_type());
        TensorInfo info_b(compute_transpose1xW_shape(*b->info()), 1, b->info()->data_type());
        _tmp_a.allocator()->init(info_a);
        _tmp_b.allocator()->init(info_b);
        _memory_group.manage(&_tmp_a);
        _memory_group.manage(&_tmp_b);

        // Configure interleave kernel
        _mtx_a_reshape_kernel.configure(a, &_tmp_a);

        // Configure transpose kernel
        _mtx_b_reshape_kernel.configure(b, &_tmp_b);
    }

    // Configure matrix multiply kernel
    _mm_kernel.configure(matrix_a, matrix_b, output, _is_interleaved_transposed);

    // Initialize matrix B reduction kernel only if _a_offset is not equal to 0
    if(_a_offset != 0)
    {
        TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32);
        _vector_sum_col.allocator()->init(info_vector_sum_col);
        _memory_group.manage(&_vector_sum_col);

        // Configure Matrix B reduction kernel
        _mtx_b_reduction_kernel.configure(b, &_vector_sum_col);
    }

    // Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
    if(_b_offset != 0)
    {
        TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32);
        _vector_sum_row.allocator()->init(info_vector_sum_row);
        _memory_group.manage(&_vector_sum_row);

        // Configure matrix A reduction kernel
        _mtx_a_reduction_kernel.configure(a, &_vector_sum_row);
    }

    // Configure offset contribution kernel
    _offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, a->info()->dimension(0), _a_offset, _b_offset);

    // Allocate tensors
    if(_is_interleaved_transposed)
    {
        _tmp_a.allocator()->allocate();
        _tmp_b.allocator()->allocate();
    }

    if(_a_offset != 0)
    {
        _vector_sum_col.allocator()->allocate();
    }

    if(_b_offset != 0)
    {
        _vector_sum_row.allocator()->allocate();
    }
}

Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
                                    "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(1) != (output)->dimension(1),
                                    "The output matrix must have the same number of rows as the matrix A");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((b)->dimension(0) != (output)->dimension(0),
                                    "The output matrix must have the same number of columns as the matrix B");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");

    int32_t a_offset                  = a->quantization_info().offset;
    int32_t b_offset                  = b->quantization_info().offset;
    bool    is_interleaved_transposed = (a->dimension(1)) > 16 && (CLScheduler::get().target() != GPUTarget::BIFROST);

    if(is_interleaved_transposed)
    {
        TensorInfo info_a(compute_interleaved_shape(*a), 1, a->data_type());
        TensorInfo info_b(compute_transpose1xW_shape(*b), 1, b->data_type());

        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &info_a, 1));
        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &info_b, 1));
        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(&info_a, &info_b, output));
    }
    else
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(a, b, output));
    }

    TensorInfo info_vector_sum_col, info_vector_sum_row;

    // Validate matrix B reduction kernel only if _a_offset is not equal to 0
    if(a_offset != 0)
    {
        info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);

        // Configure Matrix B reduction kernel
        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col));
    }

    // Validate Matrix A reduction kernel only if _b_offset is not equal to 0
    if(b_offset != 0)
    {
        info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);

        // Configure matrix A reduction kernel
        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row));
    }

    // Validate offset contribution kernel
    ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output,
                                                                             a_offset == 0 ? nullptr : &info_vector_sum_col,
                                                                             b_offset == 0 ? nullptr : &info_vector_sum_row,
                                                                             a_offset, b_offset));

    return Status{};
}

void CLGEMMLowpMatrixMultiplyCore::run()
{
    _memory_group.acquire();

    if(_is_interleaved_transposed)
    {
        // Run reshape matrix A
        CLScheduler::get().enqueue(_mtx_a_reshape_kernel, false);

        if(_is_first_run || !_reshape_b_only_on_first_run)
        {
            // Run reshape matrix B
            CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false);
        }
    }

    // Note: if _reshape_b_only_on_first_run = true, the reduction kernel can be executed only once
    if(_is_first_run || !_reshape_b_only_on_first_run)
    {
        // Run matrix B reduction kernel only if _a_offset is not equal to 0
        if(_a_offset != 0)
        {
            CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false);
        }
    }

    // Run matrix multiply
    CLScheduler::get().enqueue(_mm_kernel, false);

    // Run matrix A reduction kernel only if _b_offset is not equal to 0
    if(_b_offset != 0)
    {
        CLScheduler::get().enqueue(_mtx_a_reduction_kernel, false);
    }

    // Run offset contribution kernel
    CLScheduler::get().enqueue(_offset_contribution_kernel, true);

    _memory_group.release();

    _is_first_run = false;
}