aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/DirectConvolutionLayerFixture.h
blob: 6f204642ca03e53823afd0ad6bb2103a1a118175 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
 * Copyright (c) 2017-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/fixtures/ConvolutionLayerFixture.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/Permute.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DirectConvolutionValidationGenericFixture : public framework::Fixture
{
public:
    using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;

    void setup_quantization(const TensorShape &input_shape, const TensorShape &weights_shape, QuantizationInfo &input_q_info,
        QuantizationInfo &weights_q_info, DataType data_type)
    {
        const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
        const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());

        std::mt19937                           generator(library->seed() + _hash);
        std::uniform_real_distribution<float>  distribution_float(-5.0f, 3.0f);
        std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);

        const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]

        const int32_t offset_lhs = distribution_t(generator);
        const int32_t offset_rhs = distribution_t(generator);

        input_q_info = QuantizationInfo(scale_lhs, offset_lhs);
        weights_q_info = QuantizationInfo(scale_rhs, offset_rhs);

        QuantizationHint q_hint = suggest_conv_dst_q_info_and_bias(input_q_info, weights_q_info,
            weights_shape.y() /* heights */, weights_shape.x() /* width */, input_shape.z() /* channels */,
            data_type, 0.5f /* bias_fraction */);

        _dst_q_info = q_hint.q_info;
        _min_bias = q_hint.bias_min;
        _max_bias = q_hint.bias_max;

        // Do not change here as these limits are the natural limits of the associated data types and
        // are embeded in the computation of the dst quantization info.
        _min_u8 = 0;
        _max_u8 = 255;
        _min_s8 = -128;
        _max_s8 = 127;
    }

    void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels,
               DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout, bool mixed_layout = false)
    {
        // This hash is used by random generators. There may be hash collisions but
        // this is intentional as it's a very easy way to make the the current
        // random generation process almost different for many test configurations,
        // which were using the same set of values before.
        _hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] +
                stride_x + stride_y + pad_x + pad_y + kernel_size + num_kernels + mixed_layout
                + (data_layout == DataLayout::NHWC);

        _data_type         = data_type;
        _mixed_layout      = mixed_layout;

        TensorShape         weights_shape(kernel_size, kernel_size, input_shape.z(), num_kernels);
        const TensorShape   bias_shape(num_kernels);
        const PadStrideInfo info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR);
        const DataType      bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;

        TensorInfo input_info   = TensorInfo(input_shape, 1, data_type);
        TensorInfo weights_info = TensorInfo(weights_shape, 1, data_type);

        const TensorShape output_shape = compute_deep_convolution_shape(input_info, weights_info, info);

        QuantizationInfo input_q_info = quantization_info;
        QuantizationInfo weights_q_info = quantization_info;
        _dst_q_info = quantization_info;

        if(is_data_type_quantized(data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
        {
            setup_quantization(input_shape, weights_shape, input_q_info, weights_q_info, data_type);
        }

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info, data_layout);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info);
    }

    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
               DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
    {
        ARM_COMPUTE_ERROR_ON(data_layout == DataLayout::UNKNOWN);
        ARM_COMPUTE_UNUSED(dilation);

        // This hash is used by random generators. There may be hash collisions but
        // this is intentional as it's a very easy way to make the the current
        // random generation process almost different for many test configurations,
        // which were using the same set of values before.
        _hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] +
            weights_shape[0] + weights_shape[1] + weights_shape[2] + weights_shape[3] + dilation.x() +
            dilation.y() + info.pad_bottom() + info.pad_left() + info.pad_right() + info.pad_top();

        _data_type         = data_type;

        const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;

        QuantizationInfo input_q_info = quantization_info;
        QuantizationInfo weights_q_info = quantization_info;
        _dst_q_info = quantization_info;

        if(is_data_type_quantized(data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
        {
            setup_quantization(input_shape, weights_shape, input_q_info, weights_q_info, data_type);
        }

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info, data_layout);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info);
    }

protected:
    void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
    {
        DataLayout data_layout = src.info()->data_layout();
        // Test Multi DataLayout graph cases, when the data layout changes after configure
        src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);

        // Compute Convolution function
        layer.run();

        // Reinstating original data layout for the test suite to properly check the values
        src.info()->set_data_layout(data_layout);
        dst.info()->set_data_layout(data_layout);
    }

    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::QASYMM8:
            {
                std::uniform_int_distribution<uint32_t> distribution(_min_u8, _max_u8);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::QASYMM8_SIGNED:
            {
                // Use small input range to avoid all the test results being saturated at the end.
                std::uniform_int_distribution<int32_t> distribution(_min_s8, _max_s8);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::S32:
            {
                std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
                              DataType data_type, DataType bias_data_type, QuantizationInfo input_q_info, QuantizationInfo weights_q_info, ActivationLayerInfo act_info, const DataLayout &data_layout)
    {
        if(data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
            permute(output_shape, PermutationVector(2U, 0U, 1U));
        }

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, input_q_info, data_layout);
        TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, weights_q_info, data_layout);
        TensorType bias    = create_tensor<TensorType>(bias_shape, bias_data_type, 1, QuantizationInfo());
        TensorType dst     = create_tensor<TensorType>(output_shape, data_type, 1, _dst_q_info, data_layout);

        add_padding_x({ &src, &bias, &dst }, data_layout);
        add_padding_x({ &weights }, data_layout, input_shape[0] % 4 == 0); // Don't add left padding if cl image will be used

        // Create and configure function
        FunctionType conv;
        conv.configure(&src, &weights, &bias, &dst, info, act_info);

        ARM_COMPUTE_ASSERT(src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // Fill tensors
        fill(AccessorType(src), 0 + _hash);
        fill(AccessorType(weights), 1 + _hash);
        fill(AccessorType(bias), 2 + _hash);

        if(_mixed_layout)
        {
            mix_layout(conv, src, dst);
        }
        else
        {
            // Compute Convolution function
            conv.run();
        }

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                                      DataType data_type, DataType bias_data_type, QuantizationInfo input_q_info, QuantizationInfo weights_q_info, ActivationLayerInfo act_info)
    {
        // Create reference
        SimpleTensor<T>     src{ input_shape, data_type, 1, input_q_info };
        SimpleTensor<T>     weights{ weights_shape, data_type, 1, weights_q_info };
        SimpleTensor<TBias> bias{ bias_shape, bias_data_type, 1, QuantizationInfo() };

        // Fill reference
        fill(src, 0 + _hash);
        fill(weights, 1 + _hash);
        fill(bias, 2 + _hash);

        SimpleTensor<T> dst = reference::convolution_layer<T>(src, weights, bias, output_shape, info,
            Size2D(1U, 1U) /* dilation */, 1 /* num_groups */, _dst_q_info);
        SimpleTensor<T> dst2 = (act_info.enabled()) ? reference::activation_layer<T>(dst, act_info) : dst;
        return dst2;
    }
    TensorType       _target{};
    SimpleTensor<T>  _reference{};
    QuantizationInfo _dst_q_info{};
    DataType         _data_type{};
    bool             _mixed_layout{ false };
    int32_t _hash{0};

    // Random initialization limits
    // Default values are previously handcrafted limits
    // that sould be used when we don't use dynamic quantization
    int32_t _min_bias{-5};
    int32_t _max_bias{5};
    int32_t _min_u8{0};
    int32_t _max_u8{50};
    int32_t _min_s8{-25};
    int32_t _max_s8{25};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class DirectConvolutionValidationFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, ActivationLayerInfo act_info,
               DataLayout data_layout)
    {
        DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, QuantizationInfo(),
                                                                                                    act_info, data_layout, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class DirectConvolutionValidationQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info,
               ActivationLayerInfo act_info, DataLayout data_layout)
    {
        DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, quantization_info,
                                                                                                    act_info, data_layout, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DirectConvolutionValidationWithTensorShapesQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
               DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
    {
        DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, quantization_info,
                                                                                                    act_info, data_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DirectConvolutionValidationWithTensorShapesFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
               DataType data_type, ActivationLayerInfo act_info)
    {
        DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, QuantizationInfo(),
                                                                                                    act_info, DataLayout::NCHW);
    }
};

} // namespace validation
} // namespace test
} // namespace arm_compute

#endif // ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H