/* * Copyright (c) 2017-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H #define ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "tests/AssetsLibrary.h" #include "tests/Globals.h" #include "tests/IAccessor.h" #include "tests/framework/Asserts.h" #include "tests/framework/Fixture.h" #include "tests/validation/Helpers.h" #include "tests/validation/fixtures/ConvolutionLayerFixture.h" #include "tests/validation/reference/ConvolutionLayer.h" #include "tests/validation/reference/Permute.h" #include namespace arm_compute { namespace test { namespace validation { using namespace arm_compute::misc::shape_calculator; template class DirectConvolutionValidationGenericFixture : public framework::Fixture { public: using TBias = typename std::conditional < std::is_same::value || std::is_same::value, int32_t, T >::type; void setup_quantization(const TensorShape &input_shape, const TensorShape &weights_shape, QuantizationInfo &input_q_info, QuantizationInfo &weights_q_info, DataType data_type) { const int32_t t_max = static_cast(std::numeric_limits::max()); const int32_t t_min = static_cast(std::numeric_limits::min()); std::mt19937 generator(library->seed() + _hash); std::uniform_real_distribution distribution_float(-5.0f, 3.0f); std::uniform_int_distribution distribution_t(t_min, t_max); const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3] const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3] const int32_t offset_lhs = distribution_t(generator); const int32_t offset_rhs = distribution_t(generator); input_q_info = QuantizationInfo(scale_lhs, offset_lhs); weights_q_info = QuantizationInfo(scale_rhs, offset_rhs); QuantizationHint q_hint = suggest_conv_dst_q_info_and_bias(input_q_info, weights_q_info, weights_shape.y() /* heights */, weights_shape.x() /* width */, input_shape.z() /* channels */, data_type, 0.5f /* bias_fraction */); _dst_q_info = q_hint.q_info; _min_bias = q_hint.bias_min; _max_bias = q_hint.bias_max; // Do not change here as these limits are the natural limits of the associated data types and // are embeded in the computation of the dst quantization info. _min_u8 = 0; _max_u8 = 255; _min_s8 = -128; _max_s8 = 127; } void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout, bool mixed_layout = false) { // This hash is used by random generators. There may be hash collisions but // this is intentional as it's a very easy way to make the the current // random generation process almost different for many test configurations, // which were using the same set of values before. _hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] + stride_x + stride_y + pad_x + pad_y + kernel_size + num_kernels + mixed_layout + (data_layout == DataLayout::NHWC); _data_type = data_type; _mixed_layout = mixed_layout; TensorShape weights_shape(kernel_size, kernel_size, input_shape.z(), num_kernels); const TensorShape bias_shape(num_kernels); const PadStrideInfo info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR); const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type; TensorInfo input_info = TensorInfo(input_shape, 1, data_type); TensorInfo weights_info = TensorInfo(weights_shape, 1, data_type); const TensorShape output_shape = compute_deep_convolution_shape(input_info, weights_info, info); QuantizationInfo input_q_info = quantization_info; QuantizationInfo weights_q_info = quantization_info; _dst_q_info = quantization_info; if(is_data_type_quantized(data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY)) { setup_quantization(input_shape, weights_shape, input_q_info, weights_q_info, data_type); } _target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info, data_layout); _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info); } void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout) { ARM_COMPUTE_ERROR_ON(data_layout == DataLayout::UNKNOWN); ARM_COMPUTE_UNUSED(dilation); // This hash is used by random generators. There may be hash collisions but // this is intentional as it's a very easy way to make the the current // random generation process almost different for many test configurations, // which were using the same set of values before. _hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] + weights_shape[0] + weights_shape[1] + weights_shape[2] + weights_shape[3] + dilation.x() + dilation.y() + info.pad_bottom() + info.pad_left() + info.pad_right() + info.pad_top(); _data_type = data_type; const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type; QuantizationInfo input_q_info = quantization_info; QuantizationInfo weights_q_info = quantization_info; _dst_q_info = quantization_info; if(is_data_type_quantized(data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY)) { setup_quantization(input_shape, weights_shape, input_q_info, weights_q_info, data_type); } _target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info, data_layout); _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info); } protected: void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst) { DataLayout data_layout = src.info()->data_layout(); // Test Multi DataLayout graph cases, when the data layout changes after configure src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW); dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW); // Compute Convolution function layer.run(); // Reinstating original data layout for the test suite to properly check the values src.info()->set_data_layout(data_layout); dst.info()->set_data_layout(data_layout); } template void fill(U &&tensor, int i) { switch(tensor.data_type()) { case DataType::QASYMM8: { std::uniform_int_distribution distribution(_min_u8, _max_u8); library->fill(tensor, distribution, i); break; } case DataType::QASYMM8_SIGNED: { // Use small input range to avoid all the test results being saturated at the end. std::uniform_int_distribution distribution(_min_s8, _max_s8); library->fill(tensor, distribution, i); break; } case DataType::F16: { arm_compute::utils::uniform_real_distribution_16bit distribution{ -1.0f, 1.0f }; library->fill(tensor, distribution, i); break; } case DataType::F32: { std::uniform_real_distribution distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); break; } case DataType::S32: { std::uniform_int_distribution distribution(_min_bias, _max_bias); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info, DataType data_type, DataType bias_data_type, QuantizationInfo input_q_info, QuantizationInfo weights_q_info, ActivationLayerInfo act_info, const DataLayout &data_layout) { if(data_layout == DataLayout::NHWC) { permute(input_shape, PermutationVector(2U, 0U, 1U)); permute(weights_shape, PermutationVector(2U, 0U, 1U)); permute(output_shape, PermutationVector(2U, 0U, 1U)); } // Create tensors TensorType src = create_tensor(input_shape, data_type, 1, input_q_info, data_layout); TensorType weights = create_tensor(weights_shape, data_type, 1, weights_q_info, data_layout); TensorType bias = create_tensor(bias_shape, bias_data_type, 1, QuantizationInfo()); TensorType dst = create_tensor(output_shape, data_type, 1, _dst_q_info, data_layout); add_padding_x({ &src, &bias, &dst }, data_layout); add_padding_x({ &weights }, data_layout, input_shape[0] % 4 == 0); // Don't add left padding if cl image will be used // Create and configure function FunctionType conv; conv.configure(&src, &weights, &bias, &dst, info, act_info); ARM_COMPUTE_ASSERT(src.info()->is_resizable()); ARM_COMPUTE_ASSERT(weights.info()->is_resizable()); ARM_COMPUTE_ASSERT(bias.info()->is_resizable()); ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); // Allocate tensors src.allocator()->allocate(); weights.allocator()->allocate(); bias.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_ASSERT(!src.info()->is_resizable()); ARM_COMPUTE_ASSERT(!weights.info()->is_resizable()); ARM_COMPUTE_ASSERT(!bias.info()->is_resizable()); ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); // Fill tensors fill(AccessorType(src), 0 + _hash); fill(AccessorType(weights), 1 + _hash); fill(AccessorType(bias), 2 + _hash); if(_mixed_layout) { mix_layout(conv, src, dst); } else { // Compute Convolution function conv.run(); } return dst; } SimpleTensor compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info, DataType data_type, DataType bias_data_type, QuantizationInfo input_q_info, QuantizationInfo weights_q_info, ActivationLayerInfo act_info) { // Create reference SimpleTensor src{ input_shape, data_type, 1, input_q_info }; SimpleTensor weights{ weights_shape, data_type, 1, weights_q_info }; SimpleTensor bias{ bias_shape, bias_data_type, 1, QuantizationInfo() }; // Fill reference fill(src, 0 + _hash); fill(weights, 1 + _hash); fill(bias, 2 + _hash); SimpleTensor dst = reference::convolution_layer(src, weights, bias, output_shape, info, Size2D(1U, 1U) /* dilation */, 1 /* num_groups */, _dst_q_info); SimpleTensor dst2 = (act_info.enabled()) ? reference::activation_layer(dst, act_info) : dst; return dst2; } TensorType _target{}; SimpleTensor _reference{}; QuantizationInfo _dst_q_info{}; DataType _data_type{}; bool _mixed_layout{ false }; int32_t _hash{0}; // Random initialization limits // Default values are previously handcrafted limits // that sould be used when we don't use dynamic quantization int32_t _min_bias{-5}; int32_t _max_bias{5}; int32_t _min_u8{0}; int32_t _max_u8{50}; int32_t _min_s8{-25}; int32_t _max_s8{25}; }; template class DirectConvolutionValidationFixture : public DirectConvolutionValidationGenericFixture { public: void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, ActivationLayerInfo act_info, DataLayout data_layout) { DirectConvolutionValidationGenericFixture::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, QuantizationInfo(), act_info, data_layout, mixed_layout); } }; template class DirectConvolutionValidationQuantizedFixture : public DirectConvolutionValidationGenericFixture { public: void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout) { DirectConvolutionValidationGenericFixture::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, quantization_info, act_info, data_layout, mixed_layout); } }; template class DirectConvolutionValidationWithTensorShapesQuantizedFixture : public DirectConvolutionValidationGenericFixture { public: void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout) { DirectConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, quantization_info, act_info, data_layout); } }; template class DirectConvolutionValidationWithTensorShapesFixture : public DirectConvolutionValidationGenericFixture { public: void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataType data_type, ActivationLayerInfo act_info) { DirectConvolutionValidationGenericFixture::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, QuantizationInfo(), act_info, DataLayout::NCHW); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif // ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H