aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/cpu/operators/CpuDepthwiseConvolutionAssemblyDispatch.cpp
blob: 039714abb1ef98e0c2f93842c991f00058aba474 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
 * Copyright (c) 2019-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "src/runtime/cpu/operators/CpuDepthwiseConvolutionAssemblyDispatch.h"

#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/InfoHelpers.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/kernels/assembly/NEDepthwiseConvolutionAssemblyKernelWrapper.h"
#include "src/core/NEON/kernels/convolution/depthwise/depthwise_dilated.hpp"
#include "src/core/NEON/kernels/convolution/depthwise/depthwise_quantized_dilated.hpp"
#include "src/core/helpers/AutoConfiguration.h"

#include "arm_compute/runtime/NEON/NEScheduler.h"

#include <set>

namespace arm_compute
{
namespace cpu
{
namespace
{
std::unique_ptr<depthwise::IDepthwiseConvolution> get_qasymm8_convolver(int kernel_size, int stride_x,
                                                                        int n_batches, int in_rows, int in_cols, int n_channels,
                                                                        int dilation_factor, neon_convolution_kernels::ActivationFunction activation,
                                                                        const qasymm8::QAsymm8Params &wqinfo, const qasymm8::QAsymm8Params &iqinfo, const qasymm8::QAsymm8Params &oqinfo,
                                                                        const qasymm8::QAsymm8RescaleParams &rescale_params,
                                                                        int padding_top, int padding_left, int padding_bottom, int padding_right)
{
    switch(kernel_size)
    {
        case 3:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 3, 3, 1, 1>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 3, 3, 2, 2>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        case 5:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 5, 5, 1, 1>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::QAsymm8DilatedDepthwiseConvolution<2, 2, 5, 5, 2, 2>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        default:
            return nullptr;
    }
}

std::unique_ptr<depthwise::IDepthwiseConvolution> get_qsymm8_perchannel_convolver(int kernel_size, int stride_x,
                                                                                  int n_batches, int in_rows, int in_cols, int n_channels,
                                                                                  neon_convolution_kernels::ActivationFunction activation,
                                                                                  const qsymm8::QSymm8PerChannelParams &wqinfo, const qasymm8::QAsymm8Params &iqinfo, const qasymm8::QAsymm8Params &oqinfo,
                                                                                  const qsymm8::QSymm8PerChannelRescaleParams &rescale_params,
                                                                                  int padding_top, int padding_left, int padding_bottom, int padding_right)
{
    switch(kernel_size)
    {
        case 3:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::QSymm8HybridPerChannelDepthwiseConvolution<2, 2, 3, 3, 1, 1>>(
                               n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::QSymm8HybridPerChannelDepthwiseConvolution<2, 2, 3, 3, 2, 2>>(
                               n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        case 5:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::QSymm8HybridPerChannelDepthwiseConvolution<2, 2, 5, 5, 1, 1>>(
                               n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::QSymm8HybridPerChannelDepthwiseConvolution<2, 2, 5, 5, 2, 2>>(
                               n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        default:
            return nullptr;
    }
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
std::unique_ptr<depthwise::IDepthwiseConvolution> get_fp16_convolver(int kernel_size, int stride_x,
                                                                     int n_batches, int in_rows, int in_cols, int n_channels,
                                                                     int dilation_factor, neon_convolution_kernels::ActivationFunction activation,
                                                                     int padding_top, int padding_left, int padding_bottom, int padding_right)
{
    switch(kernel_size)
    {
        case 3:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 1, 1, float16_t, float16_t, float16_t>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 2, 2, float16_t, float16_t, float16_t>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        case 5:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 5, 5, 1, 1, float16_t, float16_t, float16_t>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 5, 5, 2, 2, float16_t, float16_t, float16_t>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        default:
            return nullptr;
    }
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

std::unique_ptr<depthwise::IDepthwiseConvolution> get_fp32_convolver(int kernel_size, int stride_x,
                                                                     int n_batches, int in_rows, int in_cols, int n_channels,
                                                                     int dilation_factor, neon_convolution_kernels::ActivationFunction activation,
                                                                     int padding_top, int padding_left, int padding_bottom, int padding_right)
{
    switch(kernel_size)
    {
        case 3:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<4, 4, 3, 3, 1, 1, float, float, float>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 3, 3, 2, 2, float, float, float>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        case 5:
        {
            switch(stride_x)
            {
                case 1:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<4, 4, 5, 5, 1, 1, float, float, float>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                case 2:
                    return std::make_unique<depthwise::DilatedDepthwiseConvolution<3, 3, 5, 5, 2, 2, float, float, float>>(
                               n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
                default:
                    return nullptr;
            }
        }
        default:
            return nullptr;
    }
}

std::unique_ptr<depthwise::IDepthwiseConvolution> create_convolver(const ITensorInfo     *input,
                                                                   const ITensorInfo     *weights,
                                                                   ITensorInfo           *output,
                                                                   const ConvolutionInfo &info)
{
    const DataType    data_type = input->data_type();
    const TensorShape shape     = input->tensor_shape();

    const int n_batches       = shape[3];
    const int in_rows         = shape.z();
    const int in_cols         = shape.y();
    const int n_channels      = shape.x();
    const int dilation_factor = info.dilation.x();
    const int padding_top     = info.pad_stride_info.pad_top();
    const int padding_left    = info.pad_stride_info.pad_left();
    const int padding_bottom  = info.pad_stride_info.pad_bottom();
    const int padding_right   = info.pad_stride_info.pad_right();

    const bool is_uniform_quantized    = (data_type == DataType::QASYMM8) && (weights->data_type() == DataType::QASYMM8);
    const bool is_perchannel_quantized = (data_type == DataType::QASYMM8) && (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);

    const unsigned int stride_x    = info.pad_stride_info.stride().first;
    const unsigned int kernel_size = weights->tensor_shape().y();

    // Map activation function
    neon_convolution_kernels::ActivationFunction activation = neon_convolution_kernels::ActivationFunction::None;
    if(arm_compute::utils::info_helpers::is_relu(info.act_info))
    {
        activation = neon_convolution_kernels::ActivationFunction::ReLU;
    }
    else if(arm_compute::utils::info_helpers::is_relu6(info.act_info))
    {
        activation = neon_convolution_kernels::ActivationFunction::ReLU6;
    }

    // Create quantized convolver
    if(is_uniform_quantized)
    {
        const UniformQuantizationInfo input_qinfo   = input->quantization_info().uniform();
        const UniformQuantizationInfo weights_qinfo = weights->quantization_info().uniform();
        const UniformQuantizationInfo output_qinfo  = output->quantization_info().uniform();

        // Check that quantization info are in the range [0, 255]
        ARM_COMPUTE_ERROR_ON(input_qinfo.offset < 0 || input_qinfo.offset > 255);
        ARM_COMPUTE_ERROR_ON(weights_qinfo.offset < 0 || weights_qinfo.offset > 255);
        ARM_COMPUTE_ERROR_ON(output_qinfo.offset < 0 || output_qinfo.offset > 255);
        const qasymm8::QAsymm8Params iqinfo{ static_cast<uint8_t>(input_qinfo.offset), input_qinfo.scale };
        const qasymm8::QAsymm8Params wqinfo{ static_cast<uint8_t>(weights_qinfo.offset), weights_qinfo.scale };
        const qasymm8::QAsymm8Params oqinfo{ static_cast<uint8_t>(output_qinfo.offset), output_qinfo.scale };

        // Calculate rescale parameters
        const float fmultipler  = iqinfo.scale * wqinfo.scale / oqinfo.scale;
        int32_t     qmultiplier = 0;
        int32_t     qshift      = 0;
        quantization::calculate_quantized_multiplier_less_than_one(fmultipler, &qmultiplier, &qshift);
        qasymm8::QAsymm8RescaleParams rescale_params(qshift, qmultiplier, fmultipler);

        return get_qasymm8_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, dilation_factor, activation,
                                     wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
    }
    else if(is_perchannel_quantized)
    {
        const UniformQuantizationInfo input_qinfo   = input->quantization_info().uniform();
        const QuantizationInfo        weights_qinfo = weights->quantization_info();
        const UniformQuantizationInfo output_qinfo  = output->quantization_info().uniform();

        // Check that quantization info are in the range [0, 255]
        ARM_COMPUTE_ERROR_ON(input_qinfo.offset < 0 || input_qinfo.offset > 255);
        ARM_COMPUTE_ERROR_ON(output_qinfo.offset < 0 || output_qinfo.offset > 255);
        const qasymm8::QAsymm8Params         iqinfo{ static_cast<uint8_t>(input_qinfo.offset), input_qinfo.scale };
        const qsymm8::QSymm8PerChannelParams wqinfo{ weights_qinfo.scale() };
        const qasymm8::QAsymm8Params         oqinfo{ static_cast<uint8_t>(output_qinfo.offset), output_qinfo.scale };

        // Calculate rescale parameters
        std::vector<float>   fmultipliers;
        std::vector<int32_t> qmultipliers;
        std::vector<int32_t> qshifts;

        for(auto const s : wqinfo.scales)
        {
            const float fmultipler  = iqinfo.scale * s / oqinfo.scale;
            int32_t     qmultiplier = 0;
            int32_t     qshift      = 0;
            quantization::calculate_quantized_multiplier_less_than_one(fmultipler, &qmultiplier, &qshift);
            fmultipliers.push_back(fmultipler);
            qmultipliers.push_back(qmultiplier);
            qshifts.push_back(qshift);
        }

        qsymm8::QSymm8PerChannelRescaleParams rescale_params(qshifts, qmultipliers, fmultipliers);

        return get_qsymm8_perchannel_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, activation,
                                               wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right);
    }
    else
    {
        // Create float convolver
        switch(data_type)
        {
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                return get_fp16_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
            }
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F32:
            {
                return get_fp32_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right);
            }
            default:
                return nullptr;
        }
    }
}
} // namespace

struct CpuDepthwiseConvolutionAssemblyDispatch::LocalImpl
{
    std::unique_ptr<depthwise::IDepthwiseConvolution> dwc_assembly_kernel{ nullptr };
    NEDepthwiseConvolutionAssemblyKernelWrapper       dwc_acl_kernel{};
    bool                                              is_prepared{ false };
    experimental::MemoryRequirements                  mem_req{};
};

#ifndef DOXYGEN_SKIP_THIS
CpuDepthwiseConvolutionAssemblyDispatch::CpuDepthwiseConvolutionAssemblyDispatch()
    : _pImpl(std::make_unique<LocalImpl>())
{
}
#endif /* DOXYGEN_SKIP_THIS */

CpuDepthwiseConvolutionAssemblyDispatch::~CpuDepthwiseConvolutionAssemblyDispatch() = default;

void CpuDepthwiseConvolutionAssemblyDispatch::configure(const ITensorInfo     *input,
                                                        const ITensorInfo     *weights,
                                                        const ITensorInfo     *bias,
                                                        ITensorInfo           *output,
                                                        const ConvolutionInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_UNUSED(bias);
    ARM_COMPUTE_ERROR_THROW_ON(CpuDepthwiseConvolutionAssemblyDispatch::validate(input,
                                                                                 weights,
                                                                                 bias != nullptr ? bias : nullptr,
                                                                                 output,
                                                                                 info));

    // Output auto inizialitation if not yet initialized
    const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, info);
    auto_init_if_empty(*output, input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));

    _pImpl->is_prepared = false;

    // Create convolver
    _pImpl->dwc_assembly_kernel = create_convolver(input, weights, output, info);
    ARM_COMPUTE_ERROR_ON(_pImpl->dwc_assembly_kernel == nullptr);

    // Create assembly kernel wrapper
    _pImpl->dwc_acl_kernel.configure(_pImpl->dwc_assembly_kernel.get());

    constexpr size_t alignment = 128;

    // Create workspace
    const unsigned int num_threads    = NEScheduler::get().num_threads();
    const size_t       workspace_size = _pImpl->dwc_assembly_kernel->get_working_space_size(num_threads);
    ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "Workspace size cannot be 0 !");
    _pImpl->mem_req.push_back({ TensorType::ACL_INT_0, workspace_size, alignment });

    // Create packing tensor
    const size_t pack_tensor_size = _pImpl->dwc_assembly_kernel->get_packed_params_size();
    ARM_COMPUTE_ERROR_ON_MSG(pack_tensor_size == 0, "Pack tensor size cannot be 0 !");

    _pImpl->mem_req.push_back({ TensorType::ACL_INT_1, pack_tensor_size, alignment });
}

experimental::MemoryRequirements CpuDepthwiseConvolutionAssemblyDispatch::workspace() const
{
    return _pImpl->mem_req;
}

Status CpuDepthwiseConvolutionAssemblyDispatch::validate(const ITensorInfo     *input,
                                                         const ITensorInfo     *weights,
                                                         const ITensorInfo     *bias,
                                                         const ITensorInfo     *output,
                                                         const ConvolutionInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
    if(weights->data_type() != DataType::QSYMM8_PER_CHANNEL)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    }
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);

    // Validate convolver
    ARM_COMPUTE_RETURN_ERROR_ON(!is_optimized_supported(input, weights, info));

    // Validate activation
    const bool is_relu  = arm_compute::utils::info_helpers::is_relu(info.act_info);
    const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(info.act_info);
    ARM_COMPUTE_RETURN_ERROR_ON(info.act_info.enabled() && !(is_relu || is_relu6));

    // Check bias
    if(bias != nullptr)
    {
        unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
        ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
        ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != weights->dimension(channel_idx));
    }

    // Check output
    if(output->total_size() != 0)
    {
        const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, info);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    // The uniform quantization case will only have 1 scale value in the weights quantization info
    const UniformQuantizationInfo input_qinfo   = input->quantization_info().uniform();
    const QuantizationInfo        weights_qinfo = weights->quantization_info();
    const UniformQuantizationInfo output_qinfo  = output->quantization_info().uniform();
    for(auto const s : weights_qinfo.scale())
    {
        const float fmultipler = input_qinfo.scale * s / output_qinfo.scale;
        ARM_COMPUTE_RETURN_ERROR_ON(fmultipler > 1.f);
    }

    return Status{};
}

bool CpuDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(const ITensorInfo     *input,
                                                                     const ITensorInfo     *weights,
                                                                     const ConvolutionInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);

    // Reshape input shape if in NHWC format
    const DataLayout data_layout = input->data_layout();
    TensorShape      in_shape{ input->tensor_shape() };
    if(data_layout == DataLayout::NHWC)
    {
        in_shape.set(Window::DimX, input->tensor_shape().y());
        in_shape.set(Window::DimY, input->tensor_shape().z());
        in_shape.set(Window::DimZ, input->tensor_shape().x());
    }

    // Check data type
    const DataType input_type            = input->data_type();
    const bool     is_input_type_valid   = is_data_type_float(input_type) || input_type == DataType::QASYMM8;
    const DataType weights_type          = weights->data_type();
    const bool     is_weights_type_valid = is_data_type_float(weights_type) || weights_type == DataType::QASYMM8 || weights_type == DataType::QASYMM8_SIGNED
                                           || weights_type == DataType::QSYMM8_PER_CHANNEL;

    // Check weighs size
    std::set<unsigned int> supported_kernel_sizes = { 3, 5 };
    const unsigned int     width_idx              = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int     height_idx             = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int     kernel_w               = weights->dimension(width_idx);
    const unsigned int     kernel_h               = weights->dimension(height_idx);
    bool                   weights_supported      = (kernel_w == kernel_h) && (supported_kernel_sizes.count(kernel_w) != 0);

    // Check for supported strides
    const auto &strides           = info.pad_stride_info.stride();
    bool        supported_strides = (strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2));

    // Check for supported padding
    const auto    pad_top           = info.pad_stride_info.pad_top();
    const auto    pad_right         = info.pad_stride_info.pad_right();
    const auto    pad_bottom        = info.pad_stride_info.pad_bottom();
    const auto    pad_left          = info.pad_stride_info.pad_left();
    PadStrideInfo same_pad          = calculate_same_pad(in_shape, TensorShape(kernel_w, kernel_h), info.pad_stride_info, DataLayout::NCHW, info.dilation);
    bool          is_same_padding   = (pad_top == same_pad.pad_top()) && (pad_right == same_pad.pad_right()) && (pad_bottom == same_pad.pad_bottom()) && (pad_left == same_pad.pad_left());
    bool          is_valid_padding  = (pad_top == 0) && (pad_right == 0) && (pad_bottom == 0) && (pad_left == 0);
    bool          supported_padding = is_same_padding || is_valid_padding;
    // TODO(COMPMID-2464): Enable once dilated conv with stride 2 is supported
    bool is_dilation_supported = ((info.dilation == Size2D(1U, 1U)) || ((info.dilation.x() == info.dilation.y()) && strides.first == 1));

    if(weights_type == DataType::QSYMM8_PER_CHANNEL)
    {
        is_dilation_supported = is_dilation_supported && (info.dilation == Size2D(1U, 1U));
    }

    return is_input_type_valid && is_weights_type_valid && weights_supported && supported_strides && supported_padding && (info.depth_multiplier == 1) && is_dilation_supported;
}

void CpuDepthwiseConvolutionAssemblyDispatch::run(ITensorPack &tensors)
{
    // Prepare assembly kernel
    prepare(tensors);

    auto src       = tensors.get_tensor(TensorType::ACL_SRC_0);
    auto workspace = tensors.get_tensor(TensorType::ACL_INT_0);
    auto dst       = tensors.get_tensor(TensorType::ACL_DST);

    // Setup inputs/outputs
    ARM_COMPUTE_ERROR_ON(workspace == nullptr && workspace->buffer() == nullptr);
    _pImpl->dwc_assembly_kernel->set_working_space(static_cast<void *>(workspace->buffer()));

    ARM_COMPUTE_ERROR_ON(workspace->buffer() == nullptr);
    const int   input_element_size = src->info()->element_size();
    const int   input_batch_stride = src->info()->strides_in_bytes()[3] / input_element_size;
    const int   input_row_stride   = src->info()->strides_in_bytes().z() / input_element_size;
    const int   input_col_stride   = src->info()->strides_in_bytes().y() / input_element_size;
    const void *input_ptr          = src->buffer() + src->info()->offset_first_element_in_bytes();
    _pImpl->dwc_assembly_kernel->set_input(input_ptr, input_batch_stride, input_row_stride, input_col_stride);

    ARM_COMPUTE_ERROR_ON(dst->buffer() == nullptr);
    const int output_element_size = dst->info()->element_size();
    const int output_batch_stride = dst->info()->strides_in_bytes()[3] / output_element_size;
    const int output_row_stride   = dst->info()->strides_in_bytes().z() / output_element_size;
    const int output_col_stride   = dst->info()->strides_in_bytes().y() / output_element_size;
    void     *output_ptr          = dst->buffer() + dst->info()->offset_first_element_in_bytes();
    _pImpl->dwc_assembly_kernel->set_output(output_ptr, output_batch_stride, output_row_stride, output_col_stride);

    // Schedule assembly kernel
    NEScheduler::get().schedule(&_pImpl->dwc_acl_kernel, Window::DimX);
}

void CpuDepthwiseConvolutionAssemblyDispatch::prepare(ITensorPack &tensors)
{
    if(!_pImpl->is_prepared)
    {
        auto weights        = tensors.get_const_tensor(TensorType::ACL_SRC_1);
        auto bias           = tensors.get_const_tensor(TensorType::ACL_SRC_2);
        auto packed_weights = tensors.get_tensor(TensorType::ACL_INT_1);

        ARM_COMPUTE_ERROR_ON(packed_weights->buffer() == nullptr);

        // Pack weights and bias
        const int weights_element_size = weights->info()->element_size();
        const int weights_row_stride   = weights->info()->strides_in_bytes().z() / weights_element_size;
        const int weights_col_stride   = weights->info()->strides_in_bytes().y() / weights_element_size;
        _pImpl->dwc_assembly_kernel->pack_params(packed_weights->buffer(),
                                                 weights->buffer() + weights->info()->offset_first_element_in_bytes(),
                                                 weights_row_stride,
                                                 weights_col_stride,
                                                 (bias != nullptr) ? bias->buffer() : nullptr);
        _pImpl->dwc_assembly_kernel->set_packed_params_buffer(packed_weights->buffer());

        weights->mark_as_unused();
        if(bias != nullptr)
        {
            bias->mark_as_unused();
        }
        _pImpl->is_prepared = true;
    }
}
} // namespace cpu
} // namespace arm_compute