/* * Copyright (c) 2019-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/runtime/cpu/operators/CpuDepthwiseConvolutionAssemblyDispatch.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/InfoHelpers.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/kernels/assembly/NEDepthwiseConvolutionAssemblyKernelWrapper.h" #include "src/core/NEON/kernels/convolution/depthwise/depthwise_dilated.hpp" #include "src/core/NEON/kernels/convolution/depthwise/depthwise_quantized_dilated.hpp" #include "src/core/helpers/AutoConfiguration.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include namespace arm_compute { namespace cpu { namespace { std::unique_ptr get_qasymm8_convolver(int kernel_size, int stride_x, int n_batches, int in_rows, int in_cols, int n_channels, int dilation_factor, neon_convolution_kernels::ActivationFunction activation, const qasymm8::QAsymm8Params &wqinfo, const qasymm8::QAsymm8Params &iqinfo, const qasymm8::QAsymm8Params &oqinfo, const qasymm8::QAsymm8RescaleParams &rescale_params, int padding_top, int padding_left, int padding_bottom, int padding_right) { switch(kernel_size) { case 3: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } case 5: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } default: return nullptr; } } std::unique_ptr get_qsymm8_perchannel_convolver(int kernel_size, int stride_x, int n_batches, int in_rows, int in_cols, int n_channels, neon_convolution_kernels::ActivationFunction activation, const qsymm8::QSymm8PerChannelParams &wqinfo, const qasymm8::QAsymm8Params &iqinfo, const qasymm8::QAsymm8Params &oqinfo, const qsymm8::QSymm8PerChannelRescaleParams &rescale_params, int padding_top, int padding_left, int padding_bottom, int padding_right) { switch(kernel_size) { case 3: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } case 5: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } default: return nullptr; } } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC std::unique_ptr get_fp16_convolver(int kernel_size, int stride_x, int n_batches, int in_rows, int in_cols, int n_channels, int dilation_factor, neon_convolution_kernels::ActivationFunction activation, int padding_top, int padding_left, int padding_bottom, int padding_right) { switch(kernel_size) { case 3: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } case 5: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } default: return nullptr; } } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC std::unique_ptr get_fp32_convolver(int kernel_size, int stride_x, int n_batches, int in_rows, int in_cols, int n_channels, int dilation_factor, neon_convolution_kernels::ActivationFunction activation, int padding_top, int padding_left, int padding_bottom, int padding_right) { switch(kernel_size) { case 3: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } case 5: { switch(stride_x) { case 1: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); case 2: return std::make_unique>( n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); default: return nullptr; } } default: return nullptr; } } std::unique_ptr create_convolver(const ITensorInfo *input, const ITensorInfo *weights, ITensorInfo *output, const ConvolutionInfo &info) { const DataType data_type = input->data_type(); const TensorShape shape = input->tensor_shape(); const int n_batches = shape[3]; const int in_rows = shape.z(); const int in_cols = shape.y(); const int n_channels = shape.x(); const int dilation_factor = info.dilation.x(); const int padding_top = info.pad_stride_info.pad_top(); const int padding_left = info.pad_stride_info.pad_left(); const int padding_bottom = info.pad_stride_info.pad_bottom(); const int padding_right = info.pad_stride_info.pad_right(); const bool is_uniform_quantized = (data_type == DataType::QASYMM8) && (weights->data_type() == DataType::QASYMM8); const bool is_perchannel_quantized = (data_type == DataType::QASYMM8) && (weights->data_type() == DataType::QSYMM8_PER_CHANNEL); const unsigned int stride_x = info.pad_stride_info.stride().first; const unsigned int kernel_size = weights->tensor_shape().y(); // Map activation function neon_convolution_kernels::ActivationFunction activation = neon_convolution_kernels::ActivationFunction::None; if(arm_compute::utils::info_helpers::is_relu(info.act_info)) { activation = neon_convolution_kernels::ActivationFunction::ReLU; } else if(arm_compute::utils::info_helpers::is_relu6(info.act_info)) { activation = neon_convolution_kernels::ActivationFunction::ReLU6; } // Create quantized convolver if(is_uniform_quantized) { const UniformQuantizationInfo input_qinfo = input->quantization_info().uniform(); const UniformQuantizationInfo weights_qinfo = weights->quantization_info().uniform(); const UniformQuantizationInfo output_qinfo = output->quantization_info().uniform(); // Check that quantization info are in the range [0, 255] ARM_COMPUTE_ERROR_ON(input_qinfo.offset < 0 || input_qinfo.offset > 255); ARM_COMPUTE_ERROR_ON(weights_qinfo.offset < 0 || weights_qinfo.offset > 255); ARM_COMPUTE_ERROR_ON(output_qinfo.offset < 0 || output_qinfo.offset > 255); const qasymm8::QAsymm8Params iqinfo{ static_cast(input_qinfo.offset), input_qinfo.scale }; const qasymm8::QAsymm8Params wqinfo{ static_cast(weights_qinfo.offset), weights_qinfo.scale }; const qasymm8::QAsymm8Params oqinfo{ static_cast(output_qinfo.offset), output_qinfo.scale }; // Calculate rescale parameters const float fmultipler = iqinfo.scale * wqinfo.scale / oqinfo.scale; int32_t qmultiplier = 0; int32_t qshift = 0; quantization::calculate_quantized_multiplier_less_than_one(fmultipler, &qmultiplier, &qshift); qasymm8::QAsymm8RescaleParams rescale_params(qshift, qmultiplier, fmultipler); return get_qasymm8_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); } else if(is_perchannel_quantized) { const UniformQuantizationInfo input_qinfo = input->quantization_info().uniform(); const QuantizationInfo weights_qinfo = weights->quantization_info(); const UniformQuantizationInfo output_qinfo = output->quantization_info().uniform(); // Check that quantization info are in the range [0, 255] ARM_COMPUTE_ERROR_ON(input_qinfo.offset < 0 || input_qinfo.offset > 255); ARM_COMPUTE_ERROR_ON(output_qinfo.offset < 0 || output_qinfo.offset > 255); const qasymm8::QAsymm8Params iqinfo{ static_cast(input_qinfo.offset), input_qinfo.scale }; const qsymm8::QSymm8PerChannelParams wqinfo{ weights_qinfo.scale() }; const qasymm8::QAsymm8Params oqinfo{ static_cast(output_qinfo.offset), output_qinfo.scale }; // Calculate rescale parameters std::vector fmultipliers; std::vector qmultipliers; std::vector qshifts; for(auto const s : wqinfo.scales) { const float fmultipler = iqinfo.scale * s / oqinfo.scale; int32_t qmultiplier = 0; int32_t qshift = 0; quantization::calculate_quantized_multiplier_less_than_one(fmultipler, &qmultiplier, &qshift); fmultipliers.push_back(fmultipler); qmultipliers.push_back(qmultiplier); qshifts.push_back(qshift); } qsymm8::QSymm8PerChannelRescaleParams rescale_params(qshifts, qmultipliers, fmultipliers); return get_qsymm8_perchannel_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, activation, wqinfo, iqinfo, oqinfo, rescale_params, padding_top, padding_left, padding_bottom, padding_right); } else { // Create float convolver switch(data_type) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { return get_fp16_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: { return get_fp32_convolver(kernel_size, stride_x, n_batches, in_rows, in_cols, n_channels, dilation_factor, activation, padding_top, padding_left, padding_bottom, padding_right); } default: return nullptr; } } } } // namespace struct CpuDepthwiseConvolutionAssemblyDispatch::LocalImpl { std::unique_ptr dwc_assembly_kernel{ nullptr }; NEDepthwiseConvolutionAssemblyKernelWrapper dwc_acl_kernel{}; bool is_prepared{ false }; experimental::MemoryRequirements mem_req{}; }; #ifndef DOXYGEN_SKIP_THIS CpuDepthwiseConvolutionAssemblyDispatch::CpuDepthwiseConvolutionAssemblyDispatch() : _pImpl(std::make_unique()) { } #endif /* DOXYGEN_SKIP_THIS */ CpuDepthwiseConvolutionAssemblyDispatch::~CpuDepthwiseConvolutionAssemblyDispatch() = default; void CpuDepthwiseConvolutionAssemblyDispatch::configure(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, ITensorInfo *output, const ConvolutionInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_UNUSED(bias); ARM_COMPUTE_ERROR_THROW_ON(CpuDepthwiseConvolutionAssemblyDispatch::validate(input, weights, bias != nullptr ? bias : nullptr, output, info)); // Output auto inizialitation if not yet initialized const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, info); auto_init_if_empty(*output, input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(output->quantization_info())); _pImpl->is_prepared = false; // Create convolver _pImpl->dwc_assembly_kernel = create_convolver(input, weights, output, info); ARM_COMPUTE_ERROR_ON(_pImpl->dwc_assembly_kernel == nullptr); // Create assembly kernel wrapper _pImpl->dwc_acl_kernel.configure(_pImpl->dwc_assembly_kernel.get()); constexpr size_t alignment = 128; // Create workspace const unsigned int num_threads = NEScheduler::get().num_threads(); const size_t workspace_size = _pImpl->dwc_assembly_kernel->get_working_space_size(num_threads); ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "Workspace size cannot be 0 !"); _pImpl->mem_req.push_back({ TensorType::ACL_INT_0, workspace_size, alignment }); // Create packing tensor const size_t pack_tensor_size = _pImpl->dwc_assembly_kernel->get_packed_params_size(); ARM_COMPUTE_ERROR_ON_MSG(pack_tensor_size == 0, "Pack tensor size cannot be 0 !"); _pImpl->mem_req.push_back({ TensorType::ACL_INT_1, pack_tensor_size, alignment }); } experimental::MemoryRequirements CpuDepthwiseConvolutionAssemblyDispatch::workspace() const { return _pImpl->mem_req; } Status CpuDepthwiseConvolutionAssemblyDispatch::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const ConvolutionInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); if(weights->data_type() != DataType::QSYMM8_PER_CHANNEL) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights); // Validate convolver ARM_COMPUTE_RETURN_ERROR_ON(!is_optimized_supported(input, weights, info)); // Validate activation const bool is_relu = arm_compute::utils::info_helpers::is_relu(info.act_info); const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(info.act_info); ARM_COMPUTE_RETURN_ERROR_ON(info.act_info.enabled() && !(is_relu || is_relu6)); // Check bias if(bias != nullptr) { unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != weights->dimension(channel_idx)); } // Check output if(output->total_size() != 0) { const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, info); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } // The uniform quantization case will only have 1 scale value in the weights quantization info const UniformQuantizationInfo input_qinfo = input->quantization_info().uniform(); const QuantizationInfo weights_qinfo = weights->quantization_info(); const UniformQuantizationInfo output_qinfo = output->quantization_info().uniform(); for(auto const s : weights_qinfo.scale()) { const float fmultipler = input_qinfo.scale * s / output_qinfo.scale; ARM_COMPUTE_RETURN_ERROR_ON(fmultipler > 1.f); } return Status{}; } bool CpuDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(const ITensorInfo *input, const ITensorInfo *weights, const ConvolutionInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights); // Reshape input shape if in NHWC format const DataLayout data_layout = input->data_layout(); TensorShape in_shape{ input->tensor_shape() }; if(data_layout == DataLayout::NHWC) { in_shape.set(Window::DimX, input->tensor_shape().y()); in_shape.set(Window::DimY, input->tensor_shape().z()); in_shape.set(Window::DimZ, input->tensor_shape().x()); } // Check data type const DataType input_type = input->data_type(); const bool is_input_type_valid = is_data_type_float(input_type) || input_type == DataType::QASYMM8; const DataType weights_type = weights->data_type(); const bool is_weights_type_valid = is_data_type_float(weights_type) || weights_type == DataType::QASYMM8 || weights_type == DataType::QASYMM8_SIGNED || weights_type == DataType::QSYMM8_PER_CHANNEL; // Check weighs size std::set supported_kernel_sizes = { 3, 5 }; const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int kernel_w = weights->dimension(width_idx); const unsigned int kernel_h = weights->dimension(height_idx); bool weights_supported = (kernel_w == kernel_h) && (supported_kernel_sizes.count(kernel_w) != 0); // Check for supported strides const auto &strides = info.pad_stride_info.stride(); bool supported_strides = (strides.first == strides.second) && ((strides.first == 1) || (strides.first == 2)); // Check for supported padding const auto pad_top = info.pad_stride_info.pad_top(); const auto pad_right = info.pad_stride_info.pad_right(); const auto pad_bottom = info.pad_stride_info.pad_bottom(); const auto pad_left = info.pad_stride_info.pad_left(); PadStrideInfo same_pad = calculate_same_pad(in_shape, TensorShape(kernel_w, kernel_h), info.pad_stride_info, DataLayout::NCHW, info.dilation); bool is_same_padding = (pad_top == same_pad.pad_top()) && (pad_right == same_pad.pad_right()) && (pad_bottom == same_pad.pad_bottom()) && (pad_left == same_pad.pad_left()); bool is_valid_padding = (pad_top == 0) && (pad_right == 0) && (pad_bottom == 0) && (pad_left == 0); bool supported_padding = is_same_padding || is_valid_padding; // TODO(COMPMID-2464): Enable once dilated conv with stride 2 is supported bool is_dilation_supported = ((info.dilation == Size2D(1U, 1U)) || ((info.dilation.x() == info.dilation.y()) && strides.first == 1)); if(weights_type == DataType::QSYMM8_PER_CHANNEL) { is_dilation_supported = is_dilation_supported && (info.dilation == Size2D(1U, 1U)); } return is_input_type_valid && is_weights_type_valid && weights_supported && supported_strides && supported_padding && (info.depth_multiplier == 1) && is_dilation_supported; } void CpuDepthwiseConvolutionAssemblyDispatch::run(ITensorPack &tensors) { // Prepare assembly kernel prepare(tensors); auto src = tensors.get_tensor(TensorType::ACL_SRC_0); auto workspace = tensors.get_tensor(TensorType::ACL_INT_0); auto dst = tensors.get_tensor(TensorType::ACL_DST); // Setup inputs/outputs ARM_COMPUTE_ERROR_ON(workspace == nullptr && workspace->buffer() == nullptr); _pImpl->dwc_assembly_kernel->set_working_space(static_cast(workspace->buffer())); ARM_COMPUTE_ERROR_ON(workspace->buffer() == nullptr); const int input_element_size = src->info()->element_size(); const int input_batch_stride = src->info()->strides_in_bytes()[3] / input_element_size; const int input_row_stride = src->info()->strides_in_bytes().z() / input_element_size; const int input_col_stride = src->info()->strides_in_bytes().y() / input_element_size; const void *input_ptr = src->buffer() + src->info()->offset_first_element_in_bytes(); _pImpl->dwc_assembly_kernel->set_input(input_ptr, input_batch_stride, input_row_stride, input_col_stride); ARM_COMPUTE_ERROR_ON(dst->buffer() == nullptr); const int output_element_size = dst->info()->element_size(); const int output_batch_stride = dst->info()->strides_in_bytes()[3] / output_element_size; const int output_row_stride = dst->info()->strides_in_bytes().z() / output_element_size; const int output_col_stride = dst->info()->strides_in_bytes().y() / output_element_size; void *output_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes(); _pImpl->dwc_assembly_kernel->set_output(output_ptr, output_batch_stride, output_row_stride, output_col_stride); // Schedule assembly kernel NEScheduler::get().schedule(&_pImpl->dwc_acl_kernel, Window::DimX); } void CpuDepthwiseConvolutionAssemblyDispatch::prepare(ITensorPack &tensors) { if(!_pImpl->is_prepared) { auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto bias = tensors.get_const_tensor(TensorType::ACL_SRC_2); auto packed_weights = tensors.get_tensor(TensorType::ACL_INT_1); ARM_COMPUTE_ERROR_ON(packed_weights->buffer() == nullptr); // Pack weights and bias const int weights_element_size = weights->info()->element_size(); const int weights_row_stride = weights->info()->strides_in_bytes().z() / weights_element_size; const int weights_col_stride = weights->info()->strides_in_bytes().y() / weights_element_size; _pImpl->dwc_assembly_kernel->pack_params(packed_weights->buffer(), weights->buffer() + weights->info()->offset_first_element_in_bytes(), weights_row_stride, weights_col_stride, (bias != nullptr) ? bias->buffer() : nullptr); _pImpl->dwc_assembly_kernel->set_packed_params_buffer(packed_weights->buffer()); weights->mark_as_unused(); if(bias != nullptr) { bias->mark_as_unused(); } _pImpl->is_prepared = true; } } } // namespace cpu } // namespace arm_compute