aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CPP/functions/CPPDetectionPostProcessLayer.cpp
blob: 3507a3ac45b3d46ab3e0082ce4dda81457ae0b4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
 * Copyright (c) 2019-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CPP/functions/CPPDetectionPostProcessLayer.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Validate.h"

#include <cstddef>
#include <ios>
#include <list>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input_box_encoding, const ITensorInfo *input_class_score, const ITensorInfo *input_anchors,
                          ITensorInfo *output_boxes, ITensorInfo *output_classes, ITensorInfo *output_scores, ITensorInfo *num_detection,
                          DetectionPostProcessLayerInfo info, const unsigned int kBatchSize, const unsigned int kNumCoordBox)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_box_encoding, input_class_score, input_anchors);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_box_encoding, 1, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_box_encoding, input_anchors);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_box_encoding->num_dimensions() > 3, "The location input tensor shape should be [4, N, kBatchSize].");
    if(input_box_encoding->num_dimensions() > 2)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(input_box_encoding->dimension(2) != kBatchSize, "The third dimension of the input box_encoding tensor should be equal to %d.", kBatchSize);
    }
    ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(input_box_encoding->dimension(0) != kNumCoordBox, "The first dimension of the input box_encoding tensor should be equal to %d.", kNumCoordBox);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_class_score->dimension(0) != (info.num_classes() + 1),
                                    "The first dimension of the input class_prediction should be equal to the number of classes plus one.");

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_anchors->num_dimensions() > 3, "The anchors input tensor shape should be [4, N, kBatchSize].");
    if(input_anchors->num_dimensions() > 2)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(input_anchors->dimension(0) != kNumCoordBox, "The first dimension of the input anchors tensor should be equal to %d.", kNumCoordBox);
    }
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((input_box_encoding->dimension(1) != input_class_score->dimension(1))
                                    || (input_box_encoding->dimension(1) != input_anchors->dimension(1)),
                                    "The second dimension of the inputs should be the same.");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_detection->num_dimensions() > 1, "The num_detection output tensor shape should be [M].");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.iou_threshold() <= 0.0f) || (info.iou_threshold() > 1.0f), "The intersection over union should be positive and less than 1.");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.max_classes_per_detection() <= 0, "The number of max classes per detection should be positive.");

    const unsigned int num_detected_boxes = info.max_detections() * info.max_classes_per_detection();

    // Validate configured outputs
    if(output_boxes->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output_boxes->tensor_shape(), TensorShape(4U, num_detected_boxes, 1U));
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_boxes, 1, DataType::F32);
    }
    if(output_classes->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output_classes->tensor_shape(), TensorShape(num_detected_boxes, 1U));
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_classes, 1, DataType::F32);
    }
    if(output_scores->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output_scores->tensor_shape(), TensorShape(num_detected_boxes, 1U));
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_scores, 1, DataType::F32);
    }
    if(num_detection->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(num_detection->tensor_shape(), TensorShape(1U));
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(num_detection, 1, DataType::F32);
    }

    return Status{};
}

inline void DecodeBoxCorner(BBox &box_centersize, BBox &anchor, Iterator &decoded_it, DetectionPostProcessLayerInfo info)
{
    const float half_factor = 0.5f;

    // BBox is equavalent to CenterSizeEncoding [y,x,h,w]
    const float y_center = box_centersize[0] / info.scale_value_y() * anchor[2] + anchor[0];
    const float x_center = box_centersize[1] / info.scale_value_x() * anchor[3] + anchor[1];
    const float half_h   = half_factor * static_cast<float>(std::exp(box_centersize[2] / info.scale_value_h())) * anchor[2];
    const float half_w   = half_factor * static_cast<float>(std::exp(box_centersize[3] / info.scale_value_w())) * anchor[3];

    // Box Corner encoding boxes are saved as [xmin, ymin, xmax, ymax]
    auto decoded_ptr   = reinterpret_cast<float *>(decoded_it.ptr());
    *(decoded_ptr)     = x_center - half_w; // xmin
    *(1 + decoded_ptr) = y_center - half_h; // ymin
    *(2 + decoded_ptr) = x_center + half_w; // xmax
    *(3 + decoded_ptr) = y_center + half_h; // ymax
}

/** Decode a bbox according to a anchors and scale info.
 *
 * @param[in]  input_box_encoding The input prior bounding boxes.
 * @param[in]  input_anchors      The corresponding input variance.
 * @param[in]  info               The detection informations
 * @param[out] decoded_boxes      The decoded bboxes.
 */
void DecodeCenterSizeBoxes(const ITensor *input_box_encoding, const ITensor *input_anchors, DetectionPostProcessLayerInfo info, Tensor *decoded_boxes)
{
    const QuantizationInfo &qi_box     = input_box_encoding->info()->quantization_info();
    const QuantizationInfo &qi_anchors = input_anchors->info()->quantization_info();
    BBox                    box_centersize{ {} };
    BBox                    anchor{ {} };

    Window win;
    win.use_tensor_dimensions(input_box_encoding->info()->tensor_shape());
    win.set_dimension_step(0U, 4U);
    win.set_dimension_step(1U, 1U);
    Iterator box_it(input_box_encoding, win);
    Iterator anchor_it(input_anchors, win);
    Iterator decoded_it(decoded_boxes, win);

    if(input_box_encoding->info()->data_type() == DataType::QASYMM8)
    {
        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto box_ptr    = reinterpret_cast<const qasymm8_t *>(box_it.ptr());
            const auto anchor_ptr = reinterpret_cast<const qasymm8_t *>(anchor_it.ptr());
            box_centersize        = BBox({ dequantize_qasymm8(*box_ptr, qi_box), dequantize_qasymm8(*(box_ptr + 1), qi_box),
                                           dequantize_qasymm8(*(2 + box_ptr), qi_box), dequantize_qasymm8(*(3 + box_ptr), qi_box)
                                         });
            anchor = BBox({ dequantize_qasymm8(*anchor_ptr, qi_anchors), dequantize_qasymm8(*(anchor_ptr + 1), qi_anchors),
                            dequantize_qasymm8(*(2 + anchor_ptr), qi_anchors), dequantize_qasymm8(*(3 + anchor_ptr), qi_anchors)
                          });
            DecodeBoxCorner(box_centersize, anchor, decoded_it, info);
        },
        box_it, anchor_it, decoded_it);
    }
    else if(input_box_encoding->info()->data_type() == DataType::QASYMM8_SIGNED)
    {
        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto box_ptr    = reinterpret_cast<const qasymm8_signed_t *>(box_it.ptr());
            const auto anchor_ptr = reinterpret_cast<const qasymm8_signed_t *>(anchor_it.ptr());
            box_centersize        = BBox({ dequantize_qasymm8_signed(*box_ptr, qi_box), dequantize_qasymm8_signed(*(box_ptr + 1), qi_box),
                                           dequantize_qasymm8_signed(*(2 + box_ptr), qi_box), dequantize_qasymm8_signed(*(3 + box_ptr), qi_box)
                                         });
            anchor = BBox({ dequantize_qasymm8_signed(*anchor_ptr, qi_anchors), dequantize_qasymm8_signed(*(anchor_ptr + 1), qi_anchors),
                            dequantize_qasymm8_signed(*(2 + anchor_ptr), qi_anchors), dequantize_qasymm8_signed(*(3 + anchor_ptr), qi_anchors)
                          });
            DecodeBoxCorner(box_centersize, anchor, decoded_it, info);
        },
        box_it, anchor_it, decoded_it);
    }
    else
    {
        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto box_ptr    = reinterpret_cast<const float *>(box_it.ptr());
            const auto anchor_ptr = reinterpret_cast<const float *>(anchor_it.ptr());
            box_centersize        = BBox({ *box_ptr, *(box_ptr + 1), *(2 + box_ptr), *(3 + box_ptr) });
            anchor                = BBox({ *anchor_ptr, *(anchor_ptr + 1), *(2 + anchor_ptr), *(3 + anchor_ptr) });
            DecodeBoxCorner(box_centersize, anchor, decoded_it, info);
        },
        box_it, anchor_it, decoded_it);
    }
}

void SaveOutputs(const Tensor *decoded_boxes, const std::vector<int> &result_idx_boxes_after_nms, const std::vector<float> &result_scores_after_nms, const std::vector<int> &result_classes_after_nms,
                 std::vector<unsigned int> &sorted_indices, const unsigned int num_output, const unsigned int max_detections, ITensor *output_boxes, ITensor *output_classes, ITensor *output_scores,
                 ITensor *num_detection)
{
    // xmin,ymin,xmax,ymax -> ymin,xmin,ymax,xmax
    unsigned int i = 0;
    for(; i < num_output; ++i)
    {
        const unsigned int box_in_idx = result_idx_boxes_after_nms[sorted_indices[i]];
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(0, i)))) = *(reinterpret_cast<float *>(decoded_boxes->ptr_to_element(Coordinates(1, box_in_idx))));
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(1, i)))) = *(reinterpret_cast<float *>(decoded_boxes->ptr_to_element(Coordinates(0, box_in_idx))));
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(2, i)))) = *(reinterpret_cast<float *>(decoded_boxes->ptr_to_element(Coordinates(3, box_in_idx))));
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(3, i)))) = *(reinterpret_cast<float *>(decoded_boxes->ptr_to_element(Coordinates(2, box_in_idx))));
        *(reinterpret_cast<float *>(output_classes->ptr_to_element(Coordinates(i)))) = static_cast<float>(result_classes_after_nms[sorted_indices[i]]);
        *(reinterpret_cast<float *>(output_scores->ptr_to_element(Coordinates(i))))  = result_scores_after_nms[sorted_indices[i]];
    }
    for(; i < max_detections; ++i)
    {
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(1, i)))) = 0.0f;
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(0, i)))) = 0.0f;
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(3, i)))) = 0.0f;
        *(reinterpret_cast<float *>(output_boxes->ptr_to_element(Coordinates(2, i)))) = 0.0f;
        *(reinterpret_cast<float *>(output_classes->ptr_to_element(Coordinates(i)))) = 0.0f;
        *(reinterpret_cast<float *>(output_scores->ptr_to_element(Coordinates(i))))  = 0.0f;
    }
    *(reinterpret_cast<float *>(num_detection->ptr_to_element(Coordinates(0)))) = num_output;
}
} // namespace

CPPDetectionPostProcessLayer::CPPDetectionPostProcessLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _nms(), _input_box_encoding(nullptr), _input_scores(nullptr), _input_anchors(nullptr), _output_boxes(nullptr), _output_classes(nullptr),
      _output_scores(nullptr), _num_detection(nullptr), _info(), _num_boxes(), _num_classes_with_background(), _num_max_detected_boxes(), _dequantize_scores(false), _decoded_boxes(), _decoded_scores(),
      _selected_indices(), _class_scores(), _input_scores_to_use(nullptr)
{
}

void CPPDetectionPostProcessLayer::configure(const ITensor *input_box_encoding, const ITensor *input_scores, const ITensor *input_anchors,
                                             ITensor *output_boxes, ITensor *output_classes, ITensor *output_scores, ITensor *num_detection, DetectionPostProcessLayerInfo info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input_box_encoding, input_scores, input_anchors, output_boxes, output_classes, output_scores);
    _num_max_detected_boxes = info.max_detections() * info.max_classes_per_detection();

    auto_init_if_empty(*output_boxes->info(), TensorInfo(TensorShape(_kNumCoordBox, _num_max_detected_boxes, _kBatchSize), 1, DataType::F32));
    auto_init_if_empty(*output_classes->info(), TensorInfo(TensorShape(_num_max_detected_boxes, _kBatchSize), 1, DataType::F32));
    auto_init_if_empty(*output_scores->info(), TensorInfo(TensorShape(_num_max_detected_boxes, _kBatchSize), 1, DataType::F32));
    auto_init_if_empty(*num_detection->info(), TensorInfo(TensorShape(1U), 1, DataType::F32));

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_box_encoding->info(), input_scores->info(), input_anchors->info(), output_boxes->info(), output_classes->info(), output_scores->info(),
                                                  num_detection->info(),
                                                  info, _kBatchSize, _kNumCoordBox));

    _input_box_encoding          = input_box_encoding;
    _input_scores                = input_scores;
    _input_anchors               = input_anchors;
    _output_boxes                = output_boxes;
    _output_classes              = output_classes;
    _output_scores               = output_scores;
    _num_detection               = num_detection;
    _info                        = info;
    _num_boxes                   = input_box_encoding->info()->dimension(1);
    _num_classes_with_background = _input_scores->info()->dimension(0);
    _dequantize_scores           = (info.dequantize_scores() && is_data_type_quantized(input_box_encoding->info()->data_type()));

    auto_init_if_empty(*_decoded_boxes.info(), TensorInfo(TensorShape(_kNumCoordBox, _input_box_encoding->info()->dimension(1), _kBatchSize), 1, DataType::F32));
    auto_init_if_empty(*_decoded_scores.info(), TensorInfo(TensorShape(_input_scores->info()->dimension(0), _input_scores->info()->dimension(1), _kBatchSize), 1, DataType::F32));
    auto_init_if_empty(*_selected_indices.info(), TensorInfo(TensorShape(info.use_regular_nms() ? info.detection_per_class() : info.max_detections()), 1, DataType::S32));
    const unsigned int num_classes_per_box = std::min(info.max_classes_per_detection(), info.num_classes());
    auto_init_if_empty(*_class_scores.info(), TensorInfo(info.use_regular_nms() ? TensorShape(_num_boxes) : TensorShape(_num_boxes * num_classes_per_box), 1, DataType::F32));

    _input_scores_to_use = _dequantize_scores ? &_decoded_scores : _input_scores;

    // Manage intermediate buffers
    _memory_group.manage(&_decoded_boxes);
    _memory_group.manage(&_decoded_scores);
    _memory_group.manage(&_selected_indices);
    _memory_group.manage(&_class_scores);
    _nms.configure(&_decoded_boxes, &_class_scores, &_selected_indices, info.use_regular_nms() ? info.detection_per_class() : info.max_detections(), info.nms_score_threshold(), info.iou_threshold());

    // Allocate and reserve intermediate tensors and vectors
    _decoded_boxes.allocator()->allocate();
    _decoded_scores.allocator()->allocate();
    _selected_indices.allocator()->allocate();
    _class_scores.allocator()->allocate();
}

Status CPPDetectionPostProcessLayer::validate(const ITensorInfo *input_box_encoding, const ITensorInfo *input_class_score, const ITensorInfo *input_anchors,
                                              ITensorInfo *output_boxes, ITensorInfo *output_classes, ITensorInfo *output_scores, ITensorInfo *num_detection, DetectionPostProcessLayerInfo info)
{
    constexpr unsigned int kBatchSize             = 1;
    constexpr unsigned int kNumCoordBox           = 4;
    const TensorInfo       _decoded_boxes_info    = TensorInfo(TensorShape(kNumCoordBox, input_box_encoding->dimension(1)), 1, DataType::F32);
    const TensorInfo       _decoded_scores_info   = TensorInfo(TensorShape(input_box_encoding->dimension(1)), 1, DataType::F32);
    const TensorInfo       _selected_indices_info = TensorInfo(TensorShape(info.max_detections()), 1, DataType::S32);

    ARM_COMPUTE_RETURN_ON_ERROR(CPPNonMaximumSuppression::validate(&_decoded_boxes_info, &_decoded_scores_info, &_selected_indices_info, info.max_detections(), info.nms_score_threshold(),
                                                                   info.iou_threshold()));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_box_encoding, input_class_score, input_anchors, output_boxes, output_classes, output_scores, num_detection, info, kBatchSize, kNumCoordBox));

    return Status{};
}

void CPPDetectionPostProcessLayer::run()
{
    const unsigned int num_classes    = _info.num_classes();
    const unsigned int max_detections = _info.max_detections();

    DecodeCenterSizeBoxes(_input_box_encoding, _input_anchors, _info, &_decoded_boxes);

    // Decode scores if necessary
    if(_dequantize_scores)
    {
        if(_input_box_encoding->info()->data_type() == DataType::QASYMM8)
        {
            for(unsigned int idx_c = 0; idx_c < _num_classes_with_background; ++idx_c)
            {
                for(unsigned int idx_b = 0; idx_b < _num_boxes; ++idx_b)
                {
                    *(reinterpret_cast<float *>(_decoded_scores.ptr_to_element(Coordinates(idx_c, idx_b)))) =
                        dequantize_qasymm8(*(reinterpret_cast<qasymm8_t *>(_input_scores->ptr_to_element(Coordinates(idx_c, idx_b)))), _input_scores->info()->quantization_info());
                }
            }
        }
        else if(_input_box_encoding->info()->data_type() == DataType::QASYMM8_SIGNED)
        {
            for(unsigned int idx_c = 0; idx_c < _num_classes_with_background; ++idx_c)
            {
                for(unsigned int idx_b = 0; idx_b < _num_boxes; ++idx_b)
                {
                    *(reinterpret_cast<float *>(_decoded_scores.ptr_to_element(Coordinates(idx_c, idx_b)))) =
                        dequantize_qasymm8_signed(*(reinterpret_cast<qasymm8_signed_t *>(_input_scores->ptr_to_element(Coordinates(idx_c, idx_b)))), _input_scores->info()->quantization_info());
                }
            }
        }
    }

    // Regular NMS
    if(_info.use_regular_nms())
    {
        std::vector<int>          result_idx_boxes_after_nms;
        std::vector<int>          result_classes_after_nms;
        std::vector<float>        result_scores_after_nms;
        std::vector<unsigned int> sorted_indices;

        for(unsigned int c = 0; c < num_classes; ++c)
        {
            // For each boxes get scores of the boxes for the class c
            for(unsigned int i = 0; i < _num_boxes; ++i)
            {
                *(reinterpret_cast<float *>(_class_scores.ptr_to_element(Coordinates(i)))) =
                    *(reinterpret_cast<float *>(_input_scores_to_use->ptr_to_element(Coordinates(c + 1, i)))); // i * _num_classes_with_background + c + 1
            }

            // Run Non-maxima Suppression
            _nms.run();

            for(unsigned int i = 0; i < _info.detection_per_class(); ++i)
            {
                const auto selected_index = *(reinterpret_cast<int *>(_selected_indices.ptr_to_element(Coordinates(i))));
                if(selected_index == -1)
                {
                    // Nms will return -1 for all the last M-elements not valid
                    break;
                }
                result_idx_boxes_after_nms.emplace_back(selected_index);
                result_scores_after_nms.emplace_back((reinterpret_cast<float *>(_class_scores.buffer()))[selected_index]);
                result_classes_after_nms.emplace_back(c);
            }
        }

        // We select the max detection numbers of the highest score of all classes
        const auto num_selected = result_scores_after_nms.size();
        const auto num_output   = std::min<unsigned int>(max_detections, num_selected);

        // Sort selected indices based on result scores
        sorted_indices.resize(num_selected);
        std::iota(sorted_indices.begin(), sorted_indices.end(), 0);
        std::partial_sort(sorted_indices.data(),
                          sorted_indices.data() + num_output,
                          sorted_indices.data() + num_selected,
                          [&](unsigned int first, unsigned int second)
        {

            return result_scores_after_nms[first] > result_scores_after_nms[second];
        });

        SaveOutputs(&_decoded_boxes, result_idx_boxes_after_nms, result_scores_after_nms, result_classes_after_nms, sorted_indices,
                    num_output, max_detections, _output_boxes, _output_classes, _output_scores, _num_detection);
    }
    // Fast NMS
    else
    {
        const unsigned int num_classes_per_box = std::min<unsigned int>(_info.max_classes_per_detection(), _info.num_classes());
        std::vector<float> max_scores;
        std::vector<int>   box_indices;
        std::vector<int>   max_score_classes;

        for(unsigned int b = 0; b < _num_boxes; ++b)
        {
            std::vector<float> box_scores;
            for(unsigned int c = 0; c < num_classes; ++c)
            {
                box_scores.emplace_back(*(reinterpret_cast<float *>(_input_scores_to_use->ptr_to_element(Coordinates(c + 1, b)))));
            }

            std::vector<unsigned int> max_score_indices;
            max_score_indices.resize(_info.num_classes());
            std::iota(max_score_indices.data(), max_score_indices.data() + _info.num_classes(), 0);
            std::partial_sort(max_score_indices.data(),
                              max_score_indices.data() + num_classes_per_box,
                              max_score_indices.data() + num_classes,
                              [&](unsigned int first, unsigned int second)
            {
                return box_scores[first] > box_scores[second];
            });

            for(unsigned int i = 0; i < num_classes_per_box; ++i)
            {
                const float score_to_add                                                                             = box_scores[max_score_indices[i]];
                *(reinterpret_cast<float *>(_class_scores.ptr_to_element(Coordinates(b * num_classes_per_box + i)))) = score_to_add;
                max_scores.emplace_back(score_to_add);
                box_indices.emplace_back(b);
                max_score_classes.emplace_back(max_score_indices[i]);
            }
        }

        // Run Non-maxima Suppression
        _nms.run();
        std::vector<unsigned int> selected_indices;
        for(unsigned int i = 0; i < max_detections; ++i)
        {
            // NMS returns M valid indices, the not valid tail is filled with -1
            if(*(reinterpret_cast<int *>(_selected_indices.ptr_to_element(Coordinates(i)))) == -1)
            {
                // Nms will return -1 for all the last M-elements not valid
                break;
            }
            selected_indices.emplace_back(*(reinterpret_cast<int *>(_selected_indices.ptr_to_element(Coordinates(i)))));
        }
        // We select the max detection numbers of the highest score of all classes
        const auto num_output = std::min<unsigned int>(_info.max_detections(), selected_indices.size());

        SaveOutputs(&_decoded_boxes, box_indices, max_scores, max_score_classes, selected_indices,
                    num_output, max_detections, _output_boxes, _output_classes, _output_scores, _num_detection);
    }
}
} // namespace arm_compute