/* * Copyright (c) 2019-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CPP/functions/CPPDetectionPostProcessLayer.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Validate.h" #include #include #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input_box_encoding, const ITensorInfo *input_class_score, const ITensorInfo *input_anchors, ITensorInfo *output_boxes, ITensorInfo *output_classes, ITensorInfo *output_scores, ITensorInfo *num_detection, DetectionPostProcessLayerInfo info, const unsigned int kBatchSize, const unsigned int kNumCoordBox) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_box_encoding, input_class_score, input_anchors); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_box_encoding, 1, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_box_encoding, input_anchors); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_box_encoding->num_dimensions() > 3, "The location input tensor shape should be [4, N, kBatchSize]."); if(input_box_encoding->num_dimensions() > 2) { ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(input_box_encoding->dimension(2) != kBatchSize, "The third dimension of the input box_encoding tensor should be equal to %d.", kBatchSize); } ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(input_box_encoding->dimension(0) != kNumCoordBox, "The first dimension of the input box_encoding tensor should be equal to %d.", kNumCoordBox); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_class_score->dimension(0) != (info.num_classes() + 1), "The first dimension of the input class_prediction should be equal to the number of classes plus one."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_anchors->num_dimensions() > 3, "The anchors input tensor shape should be [4, N, kBatchSize]."); if(input_anchors->num_dimensions() > 2) { ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(input_anchors->dimension(0) != kNumCoordBox, "The first dimension of the input anchors tensor should be equal to %d.", kNumCoordBox); } ARM_COMPUTE_RETURN_ERROR_ON_MSG((input_box_encoding->dimension(1) != input_class_score->dimension(1)) || (input_box_encoding->dimension(1) != input_anchors->dimension(1)), "The second dimension of the inputs should be the same."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_detection->num_dimensions() > 1, "The num_detection output tensor shape should be [M]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.iou_threshold() <= 0.0f) || (info.iou_threshold() > 1.0f), "The intersection over union should be positive and less than 1."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.max_classes_per_detection() <= 0, "The number of max classes per detection should be positive."); const unsigned int num_detected_boxes = info.max_detections() * info.max_classes_per_detection(); // Validate configured outputs if(output_boxes->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output_boxes->tensor_shape(), TensorShape(4U, num_detected_boxes, 1U)); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_boxes, 1, DataType::F32); } if(output_classes->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output_classes->tensor_shape(), TensorShape(num_detected_boxes, 1U)); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_classes, 1, DataType::F32); } if(output_scores->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output_scores->tensor_shape(), TensorShape(num_detected_boxes, 1U)); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_scores, 1, DataType::F32); } if(num_detection->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(num_detection->tensor_shape(), TensorShape(1U)); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(num_detection, 1, DataType::F32); } return Status{}; } inline void DecodeBoxCorner(BBox &box_centersize, BBox &anchor, Iterator &decoded_it, DetectionPostProcessLayerInfo info) { const float half_factor = 0.5f; // BBox is equavalent to CenterSizeEncoding [y,x,h,w] const float y_center = box_centersize[0] / info.scale_value_y() * anchor[2] + anchor[0]; const float x_center = box_centersize[1] / info.scale_value_x() * anchor[3] + anchor[1]; const float half_h = half_factor * static_cast(std::exp(box_centersize[2] / info.scale_value_h())) * anchor[2]; const float half_w = half_factor * static_cast(std::exp(box_centersize[3] / info.scale_value_w())) * anchor[3]; // Box Corner encoding boxes are saved as [xmin, ymin, xmax, ymax] auto decoded_ptr = reinterpret_cast(decoded_it.ptr()); *(decoded_ptr) = x_center - half_w; // xmin *(1 + decoded_ptr) = y_center - half_h; // ymin *(2 + decoded_ptr) = x_center + half_w; // xmax *(3 + decoded_ptr) = y_center + half_h; // ymax } /** Decode a bbox according to a anchors and scale info. * * @param[in] input_box_encoding The input prior bounding boxes. * @param[in] input_anchors The corresponding input variance. * @param[in] info The detection informations * @param[out] decoded_boxes The decoded bboxes. */ void DecodeCenterSizeBoxes(const ITensor *input_box_encoding, const ITensor *input_anchors, DetectionPostProcessLayerInfo info, Tensor *decoded_boxes) { const QuantizationInfo &qi_box = input_box_encoding->info()->quantization_info(); const QuantizationInfo &qi_anchors = input_anchors->info()->quantization_info(); BBox box_centersize{ {} }; BBox anchor{ {} }; Window win; win.use_tensor_dimensions(input_box_encoding->info()->tensor_shape()); win.set_dimension_step(0U, 4U); win.set_dimension_step(1U, 1U); Iterator box_it(input_box_encoding, win); Iterator anchor_it(input_anchors, win); Iterator decoded_it(decoded_boxes, win); if(input_box_encoding->info()->data_type() == DataType::QASYMM8) { execute_window_loop(win, [&](const Coordinates &) { const auto box_ptr = reinterpret_cast(box_it.ptr()); const auto anchor_ptr = reinterpret_cast(anchor_it.ptr()); box_centersize = BBox({ dequantize_qasymm8(*box_ptr, qi_box), dequantize_qasymm8(*(box_ptr + 1), qi_box), dequantize_qasymm8(*(2 + box_ptr), qi_box), dequantize_qasymm8(*(3 + box_ptr), qi_box) }); anchor = BBox({ dequantize_qasymm8(*anchor_ptr, qi_anchors), dequantize_qasymm8(*(anchor_ptr + 1), qi_anchors), dequantize_qasymm8(*(2 + anchor_ptr), qi_anchors), dequantize_qasymm8(*(3 + anchor_ptr), qi_anchors) }); DecodeBoxCorner(box_centersize, anchor, decoded_it, info); }, box_it, anchor_it, decoded_it); } else if(input_box_encoding->info()->data_type() == DataType::QASYMM8_SIGNED) { execute_window_loop(win, [&](const Coordinates &) { const auto box_ptr = reinterpret_cast(box_it.ptr()); const auto anchor_ptr = reinterpret_cast(anchor_it.ptr()); box_centersize = BBox({ dequantize_qasymm8_signed(*box_ptr, qi_box), dequantize_qasymm8_signed(*(box_ptr + 1), qi_box), dequantize_qasymm8_signed(*(2 + box_ptr), qi_box), dequantize_qasymm8_signed(*(3 + box_ptr), qi_box) }); anchor = BBox({ dequantize_qasymm8_signed(*anchor_ptr, qi_anchors), dequantize_qasymm8_signed(*(anchor_ptr + 1), qi_anchors), dequantize_qasymm8_signed(*(2 + anchor_ptr), qi_anchors), dequantize_qasymm8_signed(*(3 + anchor_ptr), qi_anchors) }); DecodeBoxCorner(box_centersize, anchor, decoded_it, info); }, box_it, anchor_it, decoded_it); } else { execute_window_loop(win, [&](const Coordinates &) { const auto box_ptr = reinterpret_cast(box_it.ptr()); const auto anchor_ptr = reinterpret_cast(anchor_it.ptr()); box_centersize = BBox({ *box_ptr, *(box_ptr + 1), *(2 + box_ptr), *(3 + box_ptr) }); anchor = BBox({ *anchor_ptr, *(anchor_ptr + 1), *(2 + anchor_ptr), *(3 + anchor_ptr) }); DecodeBoxCorner(box_centersize, anchor, decoded_it, info); }, box_it, anchor_it, decoded_it); } } void SaveOutputs(const Tensor *decoded_boxes, const std::vector &result_idx_boxes_after_nms, const std::vector &result_scores_after_nms, const std::vector &result_classes_after_nms, std::vector &sorted_indices, const unsigned int num_output, const unsigned int max_detections, ITensor *output_boxes, ITensor *output_classes, ITensor *output_scores, ITensor *num_detection) { // xmin,ymin,xmax,ymax -> ymin,xmin,ymax,xmax unsigned int i = 0; for(; i < num_output; ++i) { const unsigned int box_in_idx = result_idx_boxes_after_nms[sorted_indices[i]]; *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(0, i)))) = *(reinterpret_cast(decoded_boxes->ptr_to_element(Coordinates(1, box_in_idx)))); *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(1, i)))) = *(reinterpret_cast(decoded_boxes->ptr_to_element(Coordinates(0, box_in_idx)))); *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(2, i)))) = *(reinterpret_cast(decoded_boxes->ptr_to_element(Coordinates(3, box_in_idx)))); *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(3, i)))) = *(reinterpret_cast(decoded_boxes->ptr_to_element(Coordinates(2, box_in_idx)))); *(reinterpret_cast(output_classes->ptr_to_element(Coordinates(i)))) = static_cast(result_classes_after_nms[sorted_indices[i]]); *(reinterpret_cast(output_scores->ptr_to_element(Coordinates(i)))) = result_scores_after_nms[sorted_indices[i]]; } for(; i < max_detections; ++i) { *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(1, i)))) = 0.0f; *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(0, i)))) = 0.0f; *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(3, i)))) = 0.0f; *(reinterpret_cast(output_boxes->ptr_to_element(Coordinates(2, i)))) = 0.0f; *(reinterpret_cast(output_classes->ptr_to_element(Coordinates(i)))) = 0.0f; *(reinterpret_cast(output_scores->ptr_to_element(Coordinates(i)))) = 0.0f; } *(reinterpret_cast(num_detection->ptr_to_element(Coordinates(0)))) = num_output; } } // namespace CPPDetectionPostProcessLayer::CPPDetectionPostProcessLayer(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _nms(), _input_box_encoding(nullptr), _input_scores(nullptr), _input_anchors(nullptr), _output_boxes(nullptr), _output_classes(nullptr), _output_scores(nullptr), _num_detection(nullptr), _info(), _num_boxes(), _num_classes_with_background(), _num_max_detected_boxes(), _dequantize_scores(false), _decoded_boxes(), _decoded_scores(), _selected_indices(), _class_scores(), _input_scores_to_use(nullptr) { } void CPPDetectionPostProcessLayer::configure(const ITensor *input_box_encoding, const ITensor *input_scores, const ITensor *input_anchors, ITensor *output_boxes, ITensor *output_classes, ITensor *output_scores, ITensor *num_detection, DetectionPostProcessLayerInfo info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input_box_encoding, input_scores, input_anchors, output_boxes, output_classes, output_scores); _num_max_detected_boxes = info.max_detections() * info.max_classes_per_detection(); auto_init_if_empty(*output_boxes->info(), TensorInfo(TensorShape(_kNumCoordBox, _num_max_detected_boxes, _kBatchSize), 1, DataType::F32)); auto_init_if_empty(*output_classes->info(), TensorInfo(TensorShape(_num_max_detected_boxes, _kBatchSize), 1, DataType::F32)); auto_init_if_empty(*output_scores->info(), TensorInfo(TensorShape(_num_max_detected_boxes, _kBatchSize), 1, DataType::F32)); auto_init_if_empty(*num_detection->info(), TensorInfo(TensorShape(1U), 1, DataType::F32)); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_box_encoding->info(), input_scores->info(), input_anchors->info(), output_boxes->info(), output_classes->info(), output_scores->info(), num_detection->info(), info, _kBatchSize, _kNumCoordBox)); _input_box_encoding = input_box_encoding; _input_scores = input_scores; _input_anchors = input_anchors; _output_boxes = output_boxes; _output_classes = output_classes; _output_scores = output_scores; _num_detection = num_detection; _info = info; _num_boxes = input_box_encoding->info()->dimension(1); _num_classes_with_background = _input_scores->info()->dimension(0); _dequantize_scores = (info.dequantize_scores() && is_data_type_quantized(input_box_encoding->info()->data_type())); auto_init_if_empty(*_decoded_boxes.info(), TensorInfo(TensorShape(_kNumCoordBox, _input_box_encoding->info()->dimension(1), _kBatchSize), 1, DataType::F32)); auto_init_if_empty(*_decoded_scores.info(), TensorInfo(TensorShape(_input_scores->info()->dimension(0), _input_scores->info()->dimension(1), _kBatchSize), 1, DataType::F32)); auto_init_if_empty(*_selected_indices.info(), TensorInfo(TensorShape(info.use_regular_nms() ? info.detection_per_class() : info.max_detections()), 1, DataType::S32)); const unsigned int num_classes_per_box = std::min(info.max_classes_per_detection(), info.num_classes()); auto_init_if_empty(*_class_scores.info(), TensorInfo(info.use_regular_nms() ? TensorShape(_num_boxes) : TensorShape(_num_boxes * num_classes_per_box), 1, DataType::F32)); _input_scores_to_use = _dequantize_scores ? &_decoded_scores : _input_scores; // Manage intermediate buffers _memory_group.manage(&_decoded_boxes); _memory_group.manage(&_decoded_scores); _memory_group.manage(&_selected_indices); _memory_group.manage(&_class_scores); _nms.configure(&_decoded_boxes, &_class_scores, &_selected_indices, info.use_regular_nms() ? info.detection_per_class() : info.max_detections(), info.nms_score_threshold(), info.iou_threshold()); // Allocate and reserve intermediate tensors and vectors _decoded_boxes.allocator()->allocate(); _decoded_scores.allocator()->allocate(); _selected_indices.allocator()->allocate(); _class_scores.allocator()->allocate(); } Status CPPDetectionPostProcessLayer::validate(const ITensorInfo *input_box_encoding, const ITensorInfo *input_class_score, const ITensorInfo *input_anchors, ITensorInfo *output_boxes, ITensorInfo *output_classes, ITensorInfo *output_scores, ITensorInfo *num_detection, DetectionPostProcessLayerInfo info) { constexpr unsigned int kBatchSize = 1; constexpr unsigned int kNumCoordBox = 4; const TensorInfo _decoded_boxes_info = TensorInfo(TensorShape(kNumCoordBox, input_box_encoding->dimension(1)), 1, DataType::F32); const TensorInfo _decoded_scores_info = TensorInfo(TensorShape(input_box_encoding->dimension(1)), 1, DataType::F32); const TensorInfo _selected_indices_info = TensorInfo(TensorShape(info.max_detections()), 1, DataType::S32); ARM_COMPUTE_RETURN_ON_ERROR(CPPNonMaximumSuppression::validate(&_decoded_boxes_info, &_decoded_scores_info, &_selected_indices_info, info.max_detections(), info.nms_score_threshold(), info.iou_threshold())); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_box_encoding, input_class_score, input_anchors, output_boxes, output_classes, output_scores, num_detection, info, kBatchSize, kNumCoordBox)); return Status{}; } void CPPDetectionPostProcessLayer::run() { const unsigned int num_classes = _info.num_classes(); const unsigned int max_detections = _info.max_detections(); DecodeCenterSizeBoxes(_input_box_encoding, _input_anchors, _info, &_decoded_boxes); // Decode scores if necessary if(_dequantize_scores) { if(_input_box_encoding->info()->data_type() == DataType::QASYMM8) { for(unsigned int idx_c = 0; idx_c < _num_classes_with_background; ++idx_c) { for(unsigned int idx_b = 0; idx_b < _num_boxes; ++idx_b) { *(reinterpret_cast(_decoded_scores.ptr_to_element(Coordinates(idx_c, idx_b)))) = dequantize_qasymm8(*(reinterpret_cast(_input_scores->ptr_to_element(Coordinates(idx_c, idx_b)))), _input_scores->info()->quantization_info()); } } } else if(_input_box_encoding->info()->data_type() == DataType::QASYMM8_SIGNED) { for(unsigned int idx_c = 0; idx_c < _num_classes_with_background; ++idx_c) { for(unsigned int idx_b = 0; idx_b < _num_boxes; ++idx_b) { *(reinterpret_cast(_decoded_scores.ptr_to_element(Coordinates(idx_c, idx_b)))) = dequantize_qasymm8_signed(*(reinterpret_cast(_input_scores->ptr_to_element(Coordinates(idx_c, idx_b)))), _input_scores->info()->quantization_info()); } } } } // Regular NMS if(_info.use_regular_nms()) { std::vector result_idx_boxes_after_nms; std::vector result_classes_after_nms; std::vector result_scores_after_nms; std::vector sorted_indices; for(unsigned int c = 0; c < num_classes; ++c) { // For each boxes get scores of the boxes for the class c for(unsigned int i = 0; i < _num_boxes; ++i) { *(reinterpret_cast(_class_scores.ptr_to_element(Coordinates(i)))) = *(reinterpret_cast(_input_scores_to_use->ptr_to_element(Coordinates(c + 1, i)))); // i * _num_classes_with_background + c + 1 } // Run Non-maxima Suppression _nms.run(); for(unsigned int i = 0; i < _info.detection_per_class(); ++i) { const auto selected_index = *(reinterpret_cast(_selected_indices.ptr_to_element(Coordinates(i)))); if(selected_index == -1) { // Nms will return -1 for all the last M-elements not valid break; } result_idx_boxes_after_nms.emplace_back(selected_index); result_scores_after_nms.emplace_back((reinterpret_cast(_class_scores.buffer()))[selected_index]); result_classes_after_nms.emplace_back(c); } } // We select the max detection numbers of the highest score of all classes const auto num_selected = result_scores_after_nms.size(); const auto num_output = std::min(max_detections, num_selected); // Sort selected indices based on result scores sorted_indices.resize(num_selected); std::iota(sorted_indices.begin(), sorted_indices.end(), 0); std::partial_sort(sorted_indices.data(), sorted_indices.data() + num_output, sorted_indices.data() + num_selected, [&](unsigned int first, unsigned int second) { return result_scores_after_nms[first] > result_scores_after_nms[second]; }); SaveOutputs(&_decoded_boxes, result_idx_boxes_after_nms, result_scores_after_nms, result_classes_after_nms, sorted_indices, num_output, max_detections, _output_boxes, _output_classes, _output_scores, _num_detection); } // Fast NMS else { const unsigned int num_classes_per_box = std::min(_info.max_classes_per_detection(), _info.num_classes()); std::vector max_scores; std::vector box_indices; std::vector max_score_classes; for(unsigned int b = 0; b < _num_boxes; ++b) { std::vector box_scores; for(unsigned int c = 0; c < num_classes; ++c) { box_scores.emplace_back(*(reinterpret_cast(_input_scores_to_use->ptr_to_element(Coordinates(c + 1, b))))); } std::vector max_score_indices; max_score_indices.resize(_info.num_classes()); std::iota(max_score_indices.data(), max_score_indices.data() + _info.num_classes(), 0); std::partial_sort(max_score_indices.data(), max_score_indices.data() + num_classes_per_box, max_score_indices.data() + num_classes, [&](unsigned int first, unsigned int second) { return box_scores[first] > box_scores[second]; }); for(unsigned int i = 0; i < num_classes_per_box; ++i) { const float score_to_add = box_scores[max_score_indices[i]]; *(reinterpret_cast(_class_scores.ptr_to_element(Coordinates(b * num_classes_per_box + i)))) = score_to_add; max_scores.emplace_back(score_to_add); box_indices.emplace_back(b); max_score_classes.emplace_back(max_score_indices[i]); } } // Run Non-maxima Suppression _nms.run(); std::vector selected_indices; for(unsigned int i = 0; i < max_detections; ++i) { // NMS returns M valid indices, the not valid tail is filled with -1 if(*(reinterpret_cast(_selected_indices.ptr_to_element(Coordinates(i)))) == -1) { // Nms will return -1 for all the last M-elements not valid break; } selected_indices.emplace_back(*(reinterpret_cast(_selected_indices.ptr_to_element(Coordinates(i))))); } // We select the max detection numbers of the highest score of all classes const auto num_output = std::min(_info.max_detections(), selected_indices.size()); SaveOutputs(&_decoded_boxes, box_indices, max_scores, max_score_classes, selected_indices, num_output, max_detections, _output_boxes, _output_classes, _output_scores, _num_detection); } } } // namespace arm_compute