aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/gemm_matrix_mul/generic/neon/fp16.cpp
blob: 60fda511e3a4165efc81c3bd97033b384ca32762 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
 * Copyright (c) 2022-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

#include "src/core/utils/helpers/float_ops.h"
#include "src/cpu/kernels/gemm_matrix_mul/generic/neon/impl.h"

#include <arm_neon.h>

namespace arm_compute
{
namespace cpu
{
void vector_matrix_multiply_f16(
    const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha)
{
    const auto width_matrix_b  = static_cast<int>(dst->info()->dimension(0));
    const auto in_b_stride     = static_cast<int>(rhs->info()->strides_in_bytes()[1] / rhs->info()->element_size());
    const auto num_elems_vec_a = static_cast<int>(lhs->info()->dimension(0));

    // The implementation computes 32 elements per iteration
    const int window_start_x = 32 * info.thread_id;
    const int window_step_x  = 32 * info.num_threads;
    const int window_end_x   = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
    ARM_COMPUTE_ERROR_ON_MSG((window_end_x - window_start_x) % window_step_x,
                             " (window_end_x - window_start_x) must be multiple of window_step_x");

    Window win_out(window);
    win_out.set(Window::DimX, Window::Dimension(0, 1, 1));
    win_out.set(Window::DimY, Window::Dimension(0, 1, 1));

    Window win_a(window);
    win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_a.set(Window::DimY, Window::Dimension(0, 0, 0));

    Window win_b;
    // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
    // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
    if (rhs->info()->num_dimensions() >= 3)
    {
        win_b = window;
    }
    win_b.set(Window::DimX, Window::Dimension(0, 1, 1));
    win_b.set(Window::DimY, Window::Dimension(0, 1, 1));

    Iterator ina(lhs, win_a);
    Iterator inb(rhs, win_b);
    Iterator out(dst, win_out);

    const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));

    const float16x8_t alpha_f16 = vdupq_n_f16(alpha);

    execute_window_loop(
        win_out,
        [&](const Coordinates &)
        {
            int x = window_start_x;
            // Here we don't check for x lower equal than (window_end_x - window_step_x) because of
            // window_end_x is computed above which may cause out-of-bound writes to the dst.
            for (; x < (window_end_x - window_step_x); x += window_step_x)
            {
                if (x > width_matrix_b)
                {
                    return;
                }

                auto matrix_b = reinterpret_cast<const float16_t *>(inb.ptr()) + x;

                float16x8_t acc0 = vdupq_n_f16(0.f);
                float16x8_t acc1 = vdupq_n_f16(0.f);
                float16x8_t acc2 = vdupq_n_f16(0.f);
                float16x8_t acc3 = vdupq_n_f16(0.f);

                auto             vec_a          = reinterpret_cast<const float16_t *>(ina.ptr());
                const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a;
                for (; vec_a <= (vec_a_end_addr - 4);)
                {
                    const float16x4_t a0l = vld1_f16(vec_a);

                    float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
                    float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
                    float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
                    float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
                    float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride);
                    float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride);
                    float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride);
                    float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride);

                    acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0));
                    acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0));
                    acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0));
                    acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0));
                    acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1));
                    acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1));
                    acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1));
                    acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1));

                    matrix_b += 2 * in_b_stride;

                    b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
                    b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
                    b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
                    b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
                    b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride);
                    b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride);
                    b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride);
                    b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride);

                    acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2));
                    acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2));
                    acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2));
                    acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2));
                    acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3));
                    acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3));
                    acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3));
                    acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3));

                    vec_a += 4;
                    matrix_b += 2 * in_b_stride;
                }

                for (; vec_a < vec_a_end_addr; ++vec_a)
                {
                    const float16_t   a0  = *vec_a;
                    const float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
                    const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
                    const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
                    const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);

                    acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0));
                    acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0));
                    acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0));
                    acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0));

                    matrix_b += in_b_stride;
                }

                // Multiply by the weight of matrix product (alpha)
                if (multiply_alpha)
                {
                    acc0 = vmulq_f16(acc0, alpha_f16);
                    acc1 = vmulq_f16(acc1, alpha_f16);
                    acc2 = vmulq_f16(acc2, alpha_f16);
                    acc3 = vmulq_f16(acc3, alpha_f16);
                }

                auto vec_out = reinterpret_cast<float16_t *>(out.ptr()) + x;

                vst1q_f16(vec_out + 0, acc0);
                vst1q_f16(vec_out + 8, acc1);
                vst1q_f16(vec_out + 16, acc2);
                vst1q_f16(vec_out + 24, acc3);
            }

            for (; x < window_end_x; ++x)
            {
                if (x > width_matrix_b)
                {
                    return;
                }

                auto matrix_b = reinterpret_cast<const float16_t *>(inb.ptr()) + x;

                float16x4_t vacc = vdup_n_f16(0.f);

                auto             vec_a          = reinterpret_cast<const float16_t *>(ina.ptr());
                const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a;
                for (; vec_a <= (vec_a_end_addr - 4); vec_a += 4)
                {
                    const float16x4_t a0l = vld1_f16(vec_a);

                    const float16x4_t b_col = {
                        *(matrix_b + 0 * in_b_stride),
                        *(matrix_b + 1 * in_b_stride),
                        *(matrix_b + 2 * in_b_stride),
                        *(matrix_b + 3 * in_b_stride),
                    };

                    vacc = vadd_f16(vacc, vmul_f16(a0l, b_col));

                    matrix_b += 4 * in_b_stride;
                }

                float16_t acc =
                    vget_lane_f16(vacc, 0) + vget_lane_f16(vacc, 1) + vget_lane_f16(vacc, 2) + vget_lane_f16(vacc, 3);

                for (; vec_a < vec_a_end_addr; ++vec_a)
                {
                    const float16_t a0  = *vec_a;
                    const float16_t b00 = *matrix_b;

                    acc += b00 * a0;

                    matrix_b += in_b_stride;
                }

                // Multiply by the weight of matrix product (alpha)
                if (multiply_alpha)
                {
                    acc *= static_cast<float16_t>(alpha);
                }

                auto vec_out = reinterpret_cast<float16_t *>(out.ptr()) + x;

                *(vec_out) = acc;
            }
        },
        ina, inb, out);
}

void matrix_matrix_multiply_f16(
    const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha)
{
    ARM_COMPUTE_UNUSED(info);
    const int    out_width   = static_cast<int>(dst->info()->dimension(0));
    const int    out_height  = static_cast<int>(dst->info()->dimension(1));
    const size_t in_b_stride = rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type());
    const size_t out_stride  = dst->info()->strides_in_bytes()[1] / data_size_from_type(dst->info()->data_type());
    const int    num_elems_matrix_b_x = rhs->info()->dimension(0);

    // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the dst matrix
    Window win_a(window);
    win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1));

    Window win_b;
    // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
    // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
    if (rhs->info()->num_dimensions() >= 3)
    {
        win_b = window;
    }
    // Set step_x and step_y for matrix B. Scale by a factor of 8 the X range as the input transposed matrix A has 8 times less the cols of the dst matrix
    win_b.set(Window::DimX, Window::Dimension(window.x().start() / 8, window.x().end() / 8, in_b_stride));
    win_b.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator ina(lhs, win_a);
    Iterator inb(rhs, win_b);
    Iterator out(dst, window);

    const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));

    const float16x8_t alpha_f16 = vdupq_n_f16(alpha);

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            const auto   *mtx_a0  = reinterpret_cast<const float16_t *>(ina.ptr());
            const auto   *mtx_b0  = reinterpret_cast<const float16_t *>(inb.ptr());
            auto         *mtx_out = reinterpret_cast<float16_t *>(out.ptr());
            float16x8x4_t c       = {{vdupq_n_f16(0.f), vdupq_n_f16(0.f), vdupq_n_f16(0.f), vdupq_n_f16(0.f)}};

            /*
        This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values)
             |a00 a01 a02 a03 | a04 a05 a06 a07|
             |a10 a11 a12 a13 | a14 a15 a16 a17|
             |a20 a21 a22 a23 | a24 a25 a26 a27| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 | a40 a50 a60 a70 | ...
             |a30 a31 a32 a33 | a34 a35 a36 a37|   | a04 a14 a24 a34 || a05 a15 a25 a35 || a06 a15 a26 a36 || a07 a17 a27 a37 | a44 a54 a64 a74 | ...
             |a40 a41 a42 a43 | a44 a45 a46 a47|
             |a50 a51 a52 a53 | a54 a55 a56 a57|
             |a60 a61 a62 a63 | a64 a65 a66 a67|
             |a70 a71 a72 a73 | a74 a75 a76 a77|

             After this operation, the dst matrix will have the following shape: [ height * 4, width / 4 ]

        B Matrix has been transposed as shown below

           |b00 b01 b02 b03 b04 b05 b06 b07|
           |b10 b11 b12 b13 b14 b15 b16 b17|
           |b20 b21 b22 b23 b24 b25 b26 b27|
           |b30 b31 b32 b33 b34 b35 b36 b37|
          ------------------->

           |b00 b01 b02 b03 b04 b05 b06 b07||b10 b11 b12 b13 b14 b15 b16 b17||b20 b21 b22 b23 b24 b25 b26 b27||b30 b31 b32 b33 b34 b35 b36 b37|

            c.val[0][0] = a00*b00 + a01*b10 + a02*b20 + a03*b30
            c.val[0][1] = a00*b01 + a01*b11 + a02*b21 + a03*b31

        The size of the dst tensor's XY-plane must be the following shape [ width * 8, height / 8 ]. All other dimensions must have the same size.
        */
            const float16_t *mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x;

            for (; mtx_b0 <= (mtx_b0_end_addr - 32);)

            {
                const float16x8_t p00 = vld1q_f16(mtx_a0);
                const float16x8_t p02 = vld1q_f16(mtx_a0 + 8);

                const float16x8_t q00 = vld1q_f16(mtx_b0);
                const float16x8_t q02 = vld1q_f16(mtx_b0 + 8);
                const float16x8_t q04 = vld1q_f16(mtx_b0 + 16);
                const float16x8_t q06 = vld1q_f16(mtx_b0 + 24);

                c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vgetq_lane_f16(p00, 0)));
                c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vgetq_lane_f16(p00, 1)));
                c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vgetq_lane_f16(p00, 2)));
                c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vgetq_lane_f16(p00, 3)));

                c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q02, vgetq_lane_f16(p00, 4)));
                c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q02, vgetq_lane_f16(p00, 5)));
                c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q02, vgetq_lane_f16(p00, 6)));
                c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q02, vgetq_lane_f16(p00, 7)));

                c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q04, vgetq_lane_f16(p02, 0)));
                c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q04, vgetq_lane_f16(p02, 1)));
                c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q04, vgetq_lane_f16(p02, 2)));
                c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q04, vgetq_lane_f16(p02, 3)));

                c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q06, vgetq_lane_f16(p02, 4)));
                c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q06, vgetq_lane_f16(p02, 5)));
                c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q06, vgetq_lane_f16(p02, 6)));
                c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q06, vgetq_lane_f16(p02, 7)));

                mtx_a0 += 16;
                mtx_b0 += 32;
            }

            for (; mtx_b0 < mtx_b0_end_addr;)

            {
                const float16x4_t p00 = vld1_f16(mtx_a0);
                const float16x8_t q00 = vld1q_f16(mtx_b0);

                c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vget_lane_f16(p00, 0)));
                c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vget_lane_f16(p00, 1)));
                c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vget_lane_f16(p00, 2)));
                c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vget_lane_f16(p00, 3)));

                mtx_a0 += 4;
                mtx_b0 += 8;
            }

            if (multiply_alpha)
            {
                c.val[0] = vmulq_f16(c.val[0], alpha_f16);
                c.val[1] = vmulq_f16(c.val[1], alpha_f16);
                c.val[2] = vmulq_f16(c.val[2], alpha_f16);
                c.val[3] = vmulq_f16(c.val[3], alpha_f16);
            }

            if (id.x() < (out_width - 8))
            {
                vst1q_f16(mtx_out, c.val[0]);
                if (id.y() + 1 < out_height)
                {
                    vst1q_f16(mtx_out + 1 * out_stride, c.val[1]);
                    if (id.y() + 2 < out_height)
                    {
                        vst1q_f16(mtx_out + 2 * out_stride, c.val[2]);
                        if (id.y() + 3 < out_height)
                        {
                            vst1q_f16(mtx_out + 3 * out_stride, c.val[3]);
                        }
                    }
                }
            }
            else
            {
                // Left-over columns
                const int columns_left = out_width - id.x();
                for (int x = 0; x < columns_left; ++x)
                {
                    *(mtx_out + x) = c.val[0][x];
                    if (id.y() + 1 < out_height)
                    {
                        *(mtx_out + x + 1 * out_stride) = c.val[1][x];
                        if (id.y() + 2 < out_height)
                        {
                            *(mtx_out + x + 2 * out_stride) = c.val[2][x];
                            if (id.y() + 3 < out_height)
                            {
                                *(mtx_out + x + 3 * out_stride) = c.val[3][x];
                            }
                        }
                    }
                }
            }
        },
        ina, inb, out);
}

void neon_fp16_gemm_matrix_mul(const ITensor    *lhs,
                               const ITensor    *rhs,
                               ITensor          *dst,
                               const Window     &window,
                               const ThreadInfo &info,
                               float             alpha,
                               const bool        is_dst_vector)
{
    return (is_dst_vector) ? vector_matrix_multiply_f16(lhs, rhs, dst, window, info, alpha)
                           : matrix_matrix_multiply_f16(lhs, rhs, dst, window, info, alpha);
}
} // namespace cpu
} // namespace arm_compute
#endif //__ARM_FEATURE_FP16_VECTOR_ARITHMETIC