/* * Copyright (c) 2022-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #include "src/core/utils/helpers/float_ops.h" #include "src/cpu/kernels/gemm_matrix_mul/generic/neon/impl.h" #include namespace arm_compute { namespace cpu { void vector_matrix_multiply_f16( const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha) { const auto width_matrix_b = static_cast(dst->info()->dimension(0)); const auto in_b_stride = static_cast(rhs->info()->strides_in_bytes()[1] / rhs->info()->element_size()); const auto num_elems_vec_a = static_cast(lhs->info()->dimension(0)); // The implementation computes 32 elements per iteration const int window_start_x = 32 * info.thread_id; const int window_step_x = 32 * info.num_threads; const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; ARM_COMPUTE_ERROR_ON_MSG((window_end_x - window_start_x) % window_step_x, " (window_end_x - window_start_x) must be multiple of window_step_x"); Window win_out(window); win_out.set(Window::DimX, Window::Dimension(0, 1, 1)); win_out.set(Window::DimY, Window::Dimension(0, 1, 1)); Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if (rhs->info()->num_dimensions() >= 3) { win_b = window; } win_b.set(Window::DimX, Window::Dimension(0, 1, 1)); win_b.set(Window::DimY, Window::Dimension(0, 1, 1)); Iterator ina(lhs, win_a); Iterator inb(rhs, win_b); Iterator out(dst, win_out); const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); const float16x8_t alpha_f16 = vdupq_n_f16(alpha); execute_window_loop( win_out, [&](const Coordinates &) { int x = window_start_x; // Here we don't check for x lower equal than (window_end_x - window_step_x) because of // window_end_x is computed above which may cause out-of-bound writes to the dst. for (; x < (window_end_x - window_step_x); x += window_step_x) { if (x > width_matrix_b) { return; } auto matrix_b = reinterpret_cast(inb.ptr()) + x; float16x8_t acc0 = vdupq_n_f16(0.f); float16x8_t acc1 = vdupq_n_f16(0.f); float16x8_t acc2 = vdupq_n_f16(0.f); float16x8_t acc3 = vdupq_n_f16(0.f); auto vec_a = reinterpret_cast(ina.ptr()); const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; for (; vec_a <= (vec_a_end_addr - 4);) { const float16x4_t a0l = vld1_f16(vec_a); float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0)); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1)); matrix_b += 2 * in_b_stride; b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2)); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3)); vec_a += 4; matrix_b += 2 * in_b_stride; } for (; vec_a < vec_a_end_addr; ++vec_a) { const float16_t a0 = *vec_a; const float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0)); acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0)); acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0)); acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0)); matrix_b += in_b_stride; } // Multiply by the weight of matrix product (alpha) if (multiply_alpha) { acc0 = vmulq_f16(acc0, alpha_f16); acc1 = vmulq_f16(acc1, alpha_f16); acc2 = vmulq_f16(acc2, alpha_f16); acc3 = vmulq_f16(acc3, alpha_f16); } auto vec_out = reinterpret_cast(out.ptr()) + x; vst1q_f16(vec_out + 0, acc0); vst1q_f16(vec_out + 8, acc1); vst1q_f16(vec_out + 16, acc2); vst1q_f16(vec_out + 24, acc3); } for (; x < window_end_x; ++x) { if (x > width_matrix_b) { return; } auto matrix_b = reinterpret_cast(inb.ptr()) + x; float16x4_t vacc = vdup_n_f16(0.f); auto vec_a = reinterpret_cast(ina.ptr()); const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; for (; vec_a <= (vec_a_end_addr - 4); vec_a += 4) { const float16x4_t a0l = vld1_f16(vec_a); const float16x4_t b_col = { *(matrix_b + 0 * in_b_stride), *(matrix_b + 1 * in_b_stride), *(matrix_b + 2 * in_b_stride), *(matrix_b + 3 * in_b_stride), }; vacc = vadd_f16(vacc, vmul_f16(a0l, b_col)); matrix_b += 4 * in_b_stride; } float16_t acc = vget_lane_f16(vacc, 0) + vget_lane_f16(vacc, 1) + vget_lane_f16(vacc, 2) + vget_lane_f16(vacc, 3); for (; vec_a < vec_a_end_addr; ++vec_a) { const float16_t a0 = *vec_a; const float16_t b00 = *matrix_b; acc += b00 * a0; matrix_b += in_b_stride; } // Multiply by the weight of matrix product (alpha) if (multiply_alpha) { acc *= static_cast(alpha); } auto vec_out = reinterpret_cast(out.ptr()) + x; *(vec_out) = acc; } }, ina, inb, out); } void matrix_matrix_multiply_f16( const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha) { ARM_COMPUTE_UNUSED(info); const int out_width = static_cast(dst->info()->dimension(0)); const int out_height = static_cast(dst->info()->dimension(1)); const size_t in_b_stride = rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type()); const size_t out_stride = dst->info()->strides_in_bytes()[1] / data_size_from_type(dst->info()->data_type()); const int num_elems_matrix_b_x = rhs->info()->dimension(0); // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the dst matrix Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1)); Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if (rhs->info()->num_dimensions() >= 3) { win_b = window; } // Set step_x and step_y for matrix B. Scale by a factor of 8 the X range as the input transposed matrix A has 8 times less the cols of the dst matrix win_b.set(Window::DimX, Window::Dimension(window.x().start() / 8, window.x().end() / 8, in_b_stride)); win_b.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator ina(lhs, win_a); Iterator inb(rhs, win_b); Iterator out(dst, window); const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); const float16x8_t alpha_f16 = vdupq_n_f16(alpha); execute_window_loop( window, [&](const Coordinates &id) { const auto *mtx_a0 = reinterpret_cast(ina.ptr()); const auto *mtx_b0 = reinterpret_cast(inb.ptr()); auto *mtx_out = reinterpret_cast(out.ptr()); float16x8x4_t c = {{vdupq_n_f16(0.f), vdupq_n_f16(0.f), vdupq_n_f16(0.f), vdupq_n_f16(0.f)}}; /* This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values) |a00 a01 a02 a03 | a04 a05 a06 a07| |a10 a11 a12 a13 | a14 a15 a16 a17| |a20 a21 a22 a23 | a24 a25 a26 a27| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 | a40 a50 a60 a70 | ... |a30 a31 a32 a33 | a34 a35 a36 a37| | a04 a14 a24 a34 || a05 a15 a25 a35 || a06 a15 a26 a36 || a07 a17 a27 a37 | a44 a54 a64 a74 | ... |a40 a41 a42 a43 | a44 a45 a46 a47| |a50 a51 a52 a53 | a54 a55 a56 a57| |a60 a61 a62 a63 | a64 a65 a66 a67| |a70 a71 a72 a73 | a74 a75 a76 a77| After this operation, the dst matrix will have the following shape: [ height * 4, width / 4 ] B Matrix has been transposed as shown below |b00 b01 b02 b03 b04 b05 b06 b07| |b10 b11 b12 b13 b14 b15 b16 b17| |b20 b21 b22 b23 b24 b25 b26 b27| |b30 b31 b32 b33 b34 b35 b36 b37| -------------------> |b00 b01 b02 b03 b04 b05 b06 b07||b10 b11 b12 b13 b14 b15 b16 b17||b20 b21 b22 b23 b24 b25 b26 b27||b30 b31 b32 b33 b34 b35 b36 b37| c.val[0][0] = a00*b00 + a01*b10 + a02*b20 + a03*b30 c.val[0][1] = a00*b01 + a01*b11 + a02*b21 + a03*b31 The size of the dst tensor's XY-plane must be the following shape [ width * 8, height / 8 ]. All other dimensions must have the same size. */ const float16_t *mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x; for (; mtx_b0 <= (mtx_b0_end_addr - 32);) { const float16x8_t p00 = vld1q_f16(mtx_a0); const float16x8_t p02 = vld1q_f16(mtx_a0 + 8); const float16x8_t q00 = vld1q_f16(mtx_b0); const float16x8_t q02 = vld1q_f16(mtx_b0 + 8); const float16x8_t q04 = vld1q_f16(mtx_b0 + 16); const float16x8_t q06 = vld1q_f16(mtx_b0 + 24); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vgetq_lane_f16(p00, 0))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vgetq_lane_f16(p00, 1))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vgetq_lane_f16(p00, 2))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vgetq_lane_f16(p00, 3))); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q02, vgetq_lane_f16(p00, 4))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q02, vgetq_lane_f16(p00, 5))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q02, vgetq_lane_f16(p00, 6))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q02, vgetq_lane_f16(p00, 7))); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q04, vgetq_lane_f16(p02, 0))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q04, vgetq_lane_f16(p02, 1))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q04, vgetq_lane_f16(p02, 2))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q04, vgetq_lane_f16(p02, 3))); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q06, vgetq_lane_f16(p02, 4))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q06, vgetq_lane_f16(p02, 5))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q06, vgetq_lane_f16(p02, 6))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q06, vgetq_lane_f16(p02, 7))); mtx_a0 += 16; mtx_b0 += 32; } for (; mtx_b0 < mtx_b0_end_addr;) { const float16x4_t p00 = vld1_f16(mtx_a0); const float16x8_t q00 = vld1q_f16(mtx_b0); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vget_lane_f16(p00, 0))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vget_lane_f16(p00, 1))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vget_lane_f16(p00, 2))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vget_lane_f16(p00, 3))); mtx_a0 += 4; mtx_b0 += 8; } if (multiply_alpha) { c.val[0] = vmulq_f16(c.val[0], alpha_f16); c.val[1] = vmulq_f16(c.val[1], alpha_f16); c.val[2] = vmulq_f16(c.val[2], alpha_f16); c.val[3] = vmulq_f16(c.val[3], alpha_f16); } if (id.x() < (out_width - 8)) { vst1q_f16(mtx_out, c.val[0]); if (id.y() + 1 < out_height) { vst1q_f16(mtx_out + 1 * out_stride, c.val[1]); if (id.y() + 2 < out_height) { vst1q_f16(mtx_out + 2 * out_stride, c.val[2]); if (id.y() + 3 < out_height) { vst1q_f16(mtx_out + 3 * out_stride, c.val[3]); } } } } else { // Left-over columns const int columns_left = out_width - id.x(); for (int x = 0; x < columns_left; ++x) { *(mtx_out + x) = c.val[0][x]; if (id.y() + 1 < out_height) { *(mtx_out + x + 1 * out_stride) = c.val[1][x]; if (id.y() + 2 < out_height) { *(mtx_out + x + 2 * out_stride) = c.val[2][x]; if (id.y() + 3 < out_height) { *(mtx_out + x + 3 * out_stride) = c.val[3][x]; } } } } } }, ina, inb, out); } void neon_fp16_gemm_matrix_mul(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha, const bool is_dst_vector) { return (is_dst_vector) ? vector_matrix_multiply_f16(lhs, rhs, dst, window, info, alpha) : matrix_matrix_multiply_f16(lhs, rhs, dst, window, info, alpha); } } // namespace cpu } // namespace arm_compute #endif //__ARM_FEATURE_FP16_VECTOR_ARITHMETIC