aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/directconv2d/nhwc/neon/impl.cpp
blob: f235167e28222ac19052f81eaf027c5076e5a561 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
 * Copyright (c) 2018-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "src/cpu/kernels/directconv2d/nhwc/neon/impl.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"

#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"

#include <algorithm>

using namespace arm_compute::detail;

namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
bool have_zero_x_internal_padding(ITensorInfo *src, const ITensorInfo *weights)
{
    return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 &&
            weights->padding().right == 0);
}
} // namespace

template <typename T>
void convolve_nhwc(
    const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
{
    // Declare useful types
    using vtype       = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
    using vector_type = typename vtype::type;
    using tag_type    = typename vtype::tag_type;

    // Scalar quantities
    const int element_size   = src->info()->element_size();
    const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
    const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
    const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
    const int input_dim_w    = src->info()->dimension(1);
    const int input_dim_h    = src->info()->dimension(2);

    const int output_stride_c = dst->info()->strides_in_bytes().x();

    const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
    const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
    const int          kernel_dim_w    = weights->info()->dimension(1);
    const int          kernel_dim_h    = weights->info()->dimension(2);

    const int conv_pad_top  = conv_info.pad_top();
    const int conv_pad_left = conv_info.pad_left();
    const int conv_stride_w = std::get<0>(conv_info.stride());
    const int conv_stride_h = std::get<1>(conv_info.stride());

    // Setup input window for the output iterator
    Window window_out = window;
    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));

    // Setup input window for the weights iterator
    Window window_w = calculate_max_window(*weights->info(), Steps());
    window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
    window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
    window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));

    Iterator out(dst, window_out);
    Iterator wei(weights, window_w);

    constexpr int num_elems_read_per_iteration = 16 / sizeof(T);

    // nhwc optimized
    if (have_zero_x_internal_padding(src->info(), weights->info()))
    {
        // This function assumes that input and weights have not padding in channel

        /*
        * This implementation parallelize the full WC plane of input and weights by
        * treating them as series of elements. So for example, a 3x3 weights and
        * floating point vector operations of 4 elements per time, the first 3
        * channel elements of the first row would be taken and additionally the first
        * element of the second row. The 9 elements in each single WC weight plane
        * would require 2 4-element vector operations and a last single element operation.
        *
        * This works since when we create the input vector to multiply with the weights,
        * the exact required elements are loaded in the same order. Therefore the
        * multiplication works on the correct input/weight elements.
        */
        execute_window_loop(
            window_out,
            [&](const Coordinates &id)
            {
                /*
            * In here we create theoretical indexes which then we validate for both
            * inputs and weights.
            * As a reminder, this loop take each output point in NHW, C is treated
            * in the weights loop.
            */
                // We are computing the theoretical starting input starting points
                const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
                const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
                const int in_w_end_t   = in_w_start_t + kernel_dim_w;
                const int in_h_end_t   = in_h_start_t + kernel_dim_h;

                // We are computing the valid initial and ending input points by checking the borders
                const int in_w_start = std::max(in_w_start_t, 0);
                const int in_h_start = std::max(in_h_start_t, 0);
                const int in_w_end   = std::min(in_w_end_t, input_dim_w);
                const int in_h_end   = std::min(in_h_end_t, input_dim_h);

                // We use the input points to select the valid weight points to use
                const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w;
                const int index_h_start  = in_h_start - in_h_start_t;
                const int index_wc_end   = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w;
                const int index_h_end    = kernel_dim_h - (in_h_end_t - in_h_end);

                execute_window_loop(
                    window_w,
                    [&](const Coordinates &id_w)
                    {
                        /*
                * This is the loop in the weights, and it goes along N (the batches)
                * As a reminder, the batches of the weights are translated into the
                * channels of the output
                */
                        const T *in_ptr_row =
                            reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) +
                            id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h;
                        const T *weights_ptr_row =
                            reinterpret_cast<const T *>(wei.ptr()) + index_h_start * kernel_stride_h;
                        uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;

                        T out_temp = static_cast<T>(0);
                        for (int index_h = index_h_start; index_h < index_h_end;
                             ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h)
                        {
                            const T    *in_ptr_mover = in_ptr_row;
                            int         index_wc     = index_wc_start;
                            vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
                            for (; index_wc <= index_wc_end - num_elems_read_per_iteration;
                                 index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
                            {
                                const auto src_vec = wrapper::vloadq(in_ptr_mover);
                                const auto w_vec   = wrapper::vloadq(weights_ptr_row + index_wc);
                                out_temp_vec       = wrapper::vmla(out_temp_vec, w_vec, src_vec);
                            }
                            out_temp += vreduce(out_temp_vec);
                            for (; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover)
                            {
                                const auto src_val = *(in_ptr_mover);
                                const auto w_val   = *(weights_ptr_row + index_wc);
                                out_temp += src_val * w_val;
                            }
                        }
                        *(reinterpret_cast<T *>(out_ptr)) = out_temp;
                    },
                    wei);
            },
            out);
    }
    else // nhwc non optimized
    {
        execute_window_loop(
            window_out,
            [&](const Coordinates &id)
            {
                // We are computing the theoretical starting input starting points
                const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
                const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
                const int in_w_end_t   = in_w_start_t + kernel_dim_w;
                const int in_h_end_t   = in_h_start_t + kernel_dim_h;

                // We are computing the valid initial and ending input points by checking the borders
                const int in_w_start = std::max(in_w_start_t, 0);
                const int in_h_start = std::max(in_h_start_t, 0);
                const int in_w_end   = std::min(in_w_end_t, input_dim_w);
                const int in_h_end   = std::min(in_h_end_t, input_dim_h);

                // We use the input points to select the valid weight points to use
                const int wei_w_start = in_w_start - in_w_start_t;
                const int wei_h_start = in_h_start - in_h_start_t;
                const int wei_w_end   = kernel_dim_w - (in_w_end_t - in_w_end);
                const int wei_h_end   = kernel_dim_h - (in_h_end_t - in_h_end);

                const int      index_c_end = weights->info()->dimension(0);
                const T *const in_ptr_start =
                    reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) +
                    id[3] * input_stride_n;

                execute_window_loop(
                    window_w,
                    [&](const Coordinates &id_w)
                    {
                        const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
                        uint8_t       *out_ptr           = out.ptr() + id_w[3] * output_stride_c;

                        T out_temp = static_cast<T>(0);
                        for (int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end;
                             ++index_wei_h, ++index_in_h)
                        {
                            const T *const in_ptr_row      = in_ptr_start + index_in_h * input_stride_h;
                            const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h;
                            for (int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end;
                                 ++index_wei_w, ++index_in_w)
                            {
                                const T    *in_ptr_mover      = in_ptr_row + index_in_w * input_stride_w;
                                const T    *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
                                int         index_c           = 0;
                                vector_type out_temp_vec      = wrapper::vdup_n(static_cast<T>(0), tag_type());
                                for (; index_c <= index_c_end - num_elems_read_per_iteration;
                                     index_c += num_elems_read_per_iteration,
                                     in_ptr_mover += num_elems_read_per_iteration,
                                     weights_ptr_mover += num_elems_read_per_iteration)
                                {
                                    const auto src_vec = wrapper::vloadq(in_ptr_mover);
                                    const auto w_vec   = wrapper::vloadq(weights_ptr_mover);
                                    out_temp_vec       = wrapper::vmla(out_temp_vec, w_vec, src_vec);
                                }
                                out_temp += vreduce(out_temp_vec);
                                for (; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover)
                                {
                                    const auto src_val = *(in_ptr_mover);
                                    const auto w_val   = *(weights_ptr_mover);
                                    out_temp += src_val * w_val;
                                }
                            }
                        }
                        *(reinterpret_cast<T *>(out_ptr)) = out_temp;
                    },
                    wei);
            },
            out);
    }
}

template void convolve_nhwc<float>(
    const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info);

} // namespace kernels
} // namespace cpu
} // namespace arm_compute