/* * Copyright (c) 2018-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/directconv2d/nhwc/neon/impl.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h" #include "src/core/NEON/wrapper/wrapper.h" #include using namespace arm_compute::detail; namespace arm_compute { namespace cpu { namespace kernels { namespace { bool have_zero_x_internal_padding(ITensorInfo *src, const ITensorInfo *weights) { return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 && weights->padding().right == 0); } } // namespace template void convolve_nhwc( const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info) { // Declare useful types using vtype = wrapper::traits::neon_bitvector; using vector_type = typename vtype::type; using tag_type = typename vtype::tag_type; // Scalar quantities const int element_size = src->info()->element_size(); const int input_stride_w = src->info()->strides_in_bytes().y() / element_size; const int input_stride_h = src->info()->strides_in_bytes().z() / element_size; const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size; const int input_dim_w = src->info()->dimension(1); const int input_dim_h = src->info()->dimension(2); const int output_stride_c = dst->info()->strides_in_bytes().x(); const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size; const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size; const int kernel_dim_w = weights->info()->dimension(1); const int kernel_dim_h = weights->info()->dimension(2); const int conv_pad_top = conv_info.pad_top(); const int conv_pad_left = conv_info.pad_left(); const int conv_stride_w = std::get<0>(conv_info.stride()); const int conv_stride_h = std::get<1>(conv_info.stride()); // Setup input window for the output iterator Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); // Setup input window for the weights iterator Window window_w = calculate_max_window(*weights->info(), Steps()); window_w.set(Window::DimX, Window::Dimension(0, 1, 1)); window_w.set(Window::DimY, Window::Dimension(0, 1, 1)); window_w.set(Window::DimZ, Window::Dimension(0, 1, 1)); Iterator out(dst, window_out); Iterator wei(weights, window_w); constexpr int num_elems_read_per_iteration = 16 / sizeof(T); // nhwc optimized if (have_zero_x_internal_padding(src->info(), weights->info())) { // This function assumes that input and weights have not padding in channel /* * This implementation parallelize the full WC plane of input and weights by * treating them as series of elements. So for example, a 3x3 weights and * floating point vector operations of 4 elements per time, the first 3 * channel elements of the first row would be taken and additionally the first * element of the second row. The 9 elements in each single WC weight plane * would require 2 4-element vector operations and a last single element operation. * * This works since when we create the input vector to multiply with the weights, * the exact required elements are loaded in the same order. Therefore the * multiplication works on the correct input/weight elements. */ execute_window_loop( window_out, [&](const Coordinates &id) { /* * In here we create theoretical indexes which then we validate for both * inputs and weights. * As a reminder, this loop take each output point in NHW, C is treated * in the weights loop. */ // We are computing the theoretical starting input starting points const int in_w_start_t = static_cast(id.y()) * conv_stride_w - conv_pad_left; const int in_h_start_t = static_cast(id.z()) * conv_stride_h - conv_pad_top; const int in_w_end_t = in_w_start_t + kernel_dim_w; const int in_h_end_t = in_h_start_t + kernel_dim_h; // We are computing the valid initial and ending input points by checking the borders const int in_w_start = std::max(in_w_start_t, 0); const int in_h_start = std::max(in_h_start_t, 0); const int in_w_end = std::min(in_w_end_t, input_dim_w); const int in_h_end = std::min(in_h_end_t, input_dim_h); // We use the input points to select the valid weight points to use const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w; const int index_h_start = in_h_start - in_h_start_t; const int index_wc_end = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w; const int index_h_end = kernel_dim_h - (in_h_end_t - in_h_end); execute_window_loop( window_w, [&](const Coordinates &id_w) { /* * This is the loop in the weights, and it goes along N (the batches) * As a reminder, the batches of the weights are translated into the * channels of the output */ const T *in_ptr_row = reinterpret_cast(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h; const T *weights_ptr_row = reinterpret_cast(wei.ptr()) + index_h_start * kernel_stride_h; uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c; T out_temp = static_cast(0); for (int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h) { const T *in_ptr_mover = in_ptr_row; int index_wc = index_wc_start; vector_type out_temp_vec = wrapper::vdup_n(static_cast(0), tag_type()); for (; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration) { const auto src_vec = wrapper::vloadq(in_ptr_mover); const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wc); out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec); } out_temp += vreduce(out_temp_vec); for (; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover) { const auto src_val = *(in_ptr_mover); const auto w_val = *(weights_ptr_row + index_wc); out_temp += src_val * w_val; } } *(reinterpret_cast(out_ptr)) = out_temp; }, wei); }, out); } else // nhwc non optimized { execute_window_loop( window_out, [&](const Coordinates &id) { // We are computing the theoretical starting input starting points const int in_w_start_t = static_cast(id.y()) * conv_stride_w - conv_pad_left; const int in_h_start_t = static_cast(id.z()) * conv_stride_h - conv_pad_top; const int in_w_end_t = in_w_start_t + kernel_dim_w; const int in_h_end_t = in_h_start_t + kernel_dim_h; // We are computing the valid initial and ending input points by checking the borders const int in_w_start = std::max(in_w_start_t, 0); const int in_h_start = std::max(in_h_start_t, 0); const int in_w_end = std::min(in_w_end_t, input_dim_w); const int in_h_end = std::min(in_h_end_t, input_dim_h); // We use the input points to select the valid weight points to use const int wei_w_start = in_w_start - in_w_start_t; const int wei_h_start = in_h_start - in_h_start_t; const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end); const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end); const int index_c_end = weights->info()->dimension(0); const T *const in_ptr_start = reinterpret_cast(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n; execute_window_loop( window_w, [&](const Coordinates &id_w) { const T *const weights_ptr_start = reinterpret_cast(wei.ptr()); uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c; T out_temp = static_cast(0); for (int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h) { const T *const in_ptr_row = in_ptr_start + index_in_h * input_stride_h; const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h; for (int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w) { const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w; const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w; int index_c = 0; vector_type out_temp_vec = wrapper::vdup_n(static_cast(0), tag_type()); for (; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration) { const auto src_vec = wrapper::vloadq(in_ptr_mover); const auto w_vec = wrapper::vloadq(weights_ptr_mover); out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec); } out_temp += vreduce(out_temp_vec); for (; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover) { const auto src_val = *(in_ptr_mover); const auto w_val = *(weights_ptr_mover); out_temp += src_val * w_val; } } } *(reinterpret_cast(out_ptr)) = out_temp; }, wei); }, out); } } template void convolve_nhwc( const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info); } // namespace kernels } // namespace cpu } // namespace arm_compute