aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NENormalizationLayerKernel.cpp
blob: e5f6e4f41a8c38b8309f8aee17593ae6faaadf97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NENormalizationLayerKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

using namespace arm_compute;

namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo &norm_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_squared, output);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);

    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_squared);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, input_squared);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(norm_info.norm_size() % 2), "Normalization size should be odd");

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *input_squared, ITensorInfo *output, const NormalizationLayerInfo &norm_info)
{
    // Output tensor auto initialization if not yet initialized
    auto_init_if_empty(*output, *input->clone());

    const unsigned int num_elems_processed_per_iteration = 16 / input->element_size();

    const unsigned int norm_idx              = get_normalization_dimension_index(input->data_layout(), norm_info);
    const bool         is_norm_accross_width = norm_idx == 0;

    const unsigned int border_width = is_norm_accross_width ? num_elems_processed_per_iteration - 1 : 0;
    const BorderSize   border_size  = BorderSize(0, border_width);

    // Configure window
    Window win            = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
    bool   window_changed = false;

    if(is_norm_accross_width)
    {
        AccessWindowStatic input_access(input, -border_size.left, 0, input->dimension(0) + border_size.right, 0);
        AccessWindowStatic input_squared_access(input_squared, -border_size.left, 0, input->dimension(0) + border_size.right, 0);
        window_changed = window_changed || update_window_and_padding(win, input_access, input_squared_access);
    }
    else
    {
        AccessWindowHorizontal input_access(input, -border_size.left, num_elems_processed_per_iteration);
        AccessWindowHorizontal input_squared_access(input_squared, -border_size.left, num_elems_processed_per_iteration);
        window_changed = window_changed || update_window_and_padding(win, input_access, input_squared_access);
    }

    if(output->total_size() != 0)
    {
        AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
        window_changed = window_changed || update_window_and_padding(win, output_access);
        output_access.set_valid_region(win, input->valid_region());
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

NENormalizationLayerKernel::NENormalizationLayerKernel()
    : _func(nullptr), _input(nullptr), _input_squared(nullptr), _output(nullptr), _norm_info(NormType::IN_MAP_1D), _border_size()
{
}

BorderSize NENormalizationLayerKernel::border_size() const
{
    return _border_size;
}

void NENormalizationLayerKernel::configure(const ITensor *input, const ITensor *input_squared, ITensor *output, NormalizationLayerInfo norm_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_squared, output);
    // Output tensor auto initialization if not yet initialized
    auto_init_if_empty(*output->info(), *input->info());

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), input_squared->info(), output->info(), norm_info));

    const unsigned int num_elems_processed_per_iteration = 16 / input->info()->element_size();

    const unsigned int norm_idx              = get_normalization_dimension_index(input->info()->data_layout(), norm_info);
    const bool         is_norm_accross_width = norm_idx == 0;
    const unsigned int border_width          = is_norm_accross_width ? num_elems_processed_per_iteration - 1 : 0;

    _input         = input;
    _input_squared = input_squared;
    _output        = output;
    _norm_info     = norm_info;
    _border_size   = BorderSize(0, border_width);

    switch(_input->info()->data_type())
    {
        case DataType::F32:
        {
            switch(norm_idx)
            {
                case 0:
                {
                    if(norm_info.type() == NormType::IN_MAP_2D)
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float, 4, 0, true>;
                    }
                    else
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float, 4, 0, false>;
                    }
                    break;
                }
                case 1:
                    if(norm_info.type() == NormType::IN_MAP_2D)
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float, 4, 1, true>;
                    }
                    else
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float, 4, 1, false>;
                    }
                    break;
                case 2:
                    _func = &NENormalizationLayerKernel::normalize_float<float, 4, 2, false>;
                    break;
                default:
                    break;
            }
            break;
        }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
        {
            switch(norm_idx)
            {
                case 0:
                {
                    if(norm_info.type() == NormType::IN_MAP_2D)
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 0, true>;
                    }
                    else
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 0, false>;
                    }
                    break;
                }
                case 1:
                    if(norm_info.type() == NormType::IN_MAP_2D)
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 1, true>;
                    }
                    else
                    {
                        _func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 1, false>;
                    }
                    break;
                case 2:
                    _func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 2, false>;
                    break;
                default:
                    break;
            }
            break;
        }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        default:
            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
    }

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), input_squared->info(), output->info(), norm_info);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

template <typename T, unsigned int S, unsigned int dim, bool do_2D_norm>
void NENormalizationLayerKernel::normalize_float(const Window &window)
{
    /** NEON vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;

    Iterator input(_input, window);
    Iterator input_squared(_input_squared, window);
    Iterator output(_output, window);

    const int dim_y                = _input->info()->data_layout() == DataLayout::NCHW ? 1 : 2;
    const int radius               = _norm_info.norm_size() / 2;
    const int input_squared_stride = _input_squared->info()->strides_in_bytes()[dim];
    // We account padding across X only and we iterate over rows
    const int min_left   = (dim == 2) ? 0 : -static_cast<int>(border_size().left);
    const int max_right  = _input->info()->dimension(dim) - 1;
    const int max_bottom = _input->info()->dimension(dim_y) - 1;

    const auto coeff_vec = wrapper::vdup_n(static_cast<T>(_norm_info.scale_coeff()), ExactTagType{});
    const auto beta_vec  = wrapper::vdup_n(static_cast<T>(_norm_info.beta()), ExactTagType{});
    const auto kappa_vec = wrapper::vdup_n(static_cast<T>(_norm_info.kappa()), ExactTagType{});

    execute_window_loop(window, [&](const Coordinates & id)
    {
        // Get range to normalize
        const int current_row   = do_2D_norm ? id[dim_y] : 0;
        const int current_slice = id[dim];
        const int first_row     = do_2D_norm ? std::max(current_row - radius, 0) : 0;
        const int last_row      = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
        const int first_slice   = std::max(current_slice - radius, min_left);
        const int last_slice    = std::min(current_slice + radius, max_right);

        // Accumulate 2D In-Map values
        auto accu = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
        for(int j = first_row; j <= last_row; j++)
        {
            // Compute row displacement
            const int            row               = (j - current_row) * _input_squared->info()->strides_in_bytes()[dim_y];
            const uint8_t *const input_squared_ptr = input_squared.ptr() + row - (current_slice * input_squared_stride);
            for(int i = first_slice; i <= last_slice; ++i)
            {
                accu = wrapper::vadd(accu, wrapper::vloadq(reinterpret_cast<const T *>(input_squared_ptr + i * input_squared_stride)));
            }
        }

        // Normalize
        const auto normalized       = wrapper::vpow(wrapper::vmla(kappa_vec, coeff_vec, accu), beta_vec);
        const auto normalized_pixel = wrapper::vmul(wrapper::vloadq(reinterpret_cast<const T *>(input.ptr())), wrapper::vinv(normalized));
        wrapper::vstore(reinterpret_cast<T *>(output.ptr()), normalized_pixel);
    },
    input, input_squared, output);
}

Status NENormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo norm_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, input_squared, output, norm_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), input_squared->clone().get(), output->clone().get(), norm_info).first);

    return Status{};
}

void NENormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    // Run function
    (this->*_func)(window);
}