/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NENormalizationLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo &norm_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_squared, output); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_squared); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, input_squared); ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(norm_info.norm_size() % 2), "Normalization size should be odd"); // Checks performed when output is configured if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *input_squared, ITensorInfo *output, const NormalizationLayerInfo &norm_info) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output, *input->clone()); const unsigned int num_elems_processed_per_iteration = 16 / input->element_size(); const unsigned int norm_idx = get_normalization_dimension_index(input->data_layout(), norm_info); const bool is_norm_accross_width = norm_idx == 0; const unsigned int border_width = is_norm_accross_width ? num_elems_processed_per_iteration - 1 : 0; const BorderSize border_size = BorderSize(0, border_width); // Configure window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); bool window_changed = false; if(is_norm_accross_width) { AccessWindowStatic input_access(input, -border_size.left, 0, input->dimension(0) + border_size.right, 0); AccessWindowStatic input_squared_access(input_squared, -border_size.left, 0, input->dimension(0) + border_size.right, 0); window_changed = window_changed || update_window_and_padding(win, input_access, input_squared_access); } else { AccessWindowHorizontal input_access(input, -border_size.left, num_elems_processed_per_iteration); AccessWindowHorizontal input_squared_access(input_squared, -border_size.left, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, input_access, input_squared_access); } if(output->total_size() != 0) { AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, output_access); output_access.set_valid_region(win, input->valid_region()); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace NENormalizationLayerKernel::NENormalizationLayerKernel() : _func(nullptr), _input(nullptr), _input_squared(nullptr), _output(nullptr), _norm_info(NormType::IN_MAP_1D), _border_size() { } BorderSize NENormalizationLayerKernel::border_size() const { return _border_size; } void NENormalizationLayerKernel::configure(const ITensor *input, const ITensor *input_squared, ITensor *output, NormalizationLayerInfo norm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_squared, output); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output->info(), *input->info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), input_squared->info(), output->info(), norm_info)); const unsigned int num_elems_processed_per_iteration = 16 / input->info()->element_size(); const unsigned int norm_idx = get_normalization_dimension_index(input->info()->data_layout(), norm_info); const bool is_norm_accross_width = norm_idx == 0; const unsigned int border_width = is_norm_accross_width ? num_elems_processed_per_iteration - 1 : 0; _input = input; _input_squared = input_squared; _output = output; _norm_info = norm_info; _border_size = BorderSize(0, border_width); switch(_input->info()->data_type()) { case DataType::F32: { switch(norm_idx) { case 0: { if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; } case 1: if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; case 2: _func = &NENormalizationLayerKernel::normalize_float; break; default: break; } break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { switch(norm_idx) { case 0: { if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; } case 1: if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; case 2: _func = &NENormalizationLayerKernel::normalize_float; break; default: break; } break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } // Configure kernel window auto win_config = validate_and_configure_window(input->info(), input_squared->info(), output->info(), norm_info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } template void NENormalizationLayerKernel::normalize_float(const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_vector::tag_type; Iterator input(_input, window); Iterator input_squared(_input_squared, window); Iterator output(_output, window); const int dim_y = _input->info()->data_layout() == DataLayout::NCHW ? 1 : 2; const int radius = _norm_info.norm_size() / 2; const int input_squared_stride = _input_squared->info()->strides_in_bytes()[dim]; // We account padding across X only and we iterate over rows const int min_left = (dim == 2) ? 0 : -static_cast(border_size().left); const int max_right = _input->info()->dimension(dim) - 1; const int max_bottom = _input->info()->dimension(dim_y) - 1; const auto coeff_vec = wrapper::vdup_n(static_cast(_norm_info.scale_coeff()), ExactTagType{}); const auto beta_vec = wrapper::vdup_n(static_cast(_norm_info.beta()), ExactTagType{}); const auto kappa_vec = wrapper::vdup_n(static_cast(_norm_info.kappa()), ExactTagType{}); execute_window_loop(window, [&](const Coordinates & id) { // Get range to normalize const int current_row = do_2D_norm ? id[dim_y] : 0; const int current_slice = id[dim]; const int first_row = do_2D_norm ? std::max(current_row - radius, 0) : 0; const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0; const int first_slice = std::max(current_slice - radius, min_left); const int last_slice = std::min(current_slice + radius, max_right); // Accumulate 2D In-Map values auto accu = wrapper::vdup_n(static_cast(0.f), ExactTagType{}); for(int j = first_row; j <= last_row; j++) { // Compute row displacement const int row = (j - current_row) * _input_squared->info()->strides_in_bytes()[dim_y]; const uint8_t *const input_squared_ptr = input_squared.ptr() + row - (current_slice * input_squared_stride); for(int i = first_slice; i <= last_slice; ++i) { accu = wrapper::vadd(accu, wrapper::vloadq(reinterpret_cast(input_squared_ptr + i * input_squared_stride))); } } // Normalize const auto normalized = wrapper::vpow(wrapper::vmla(kappa_vec, coeff_vec, accu), beta_vec); const auto normalized_pixel = wrapper::vmul(wrapper::vloadq(reinterpret_cast(input.ptr())), wrapper::vinv(normalized)); wrapper::vstore(reinterpret_cast(output.ptr()), normalized_pixel); }, input, input_squared, output); } Status NENormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo norm_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, input_squared, output, norm_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), input_squared->clone().get(), output->clone().get(), norm_info).first); return Status{}; } void NENormalizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); // Run function (this->*_func)(window); }