aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.cpp
blob: 9400c9704add2c07a4b7fc83f0155b9f3da7fe2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
 * Copyright (c) 2019-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"

#include <arm_neon.h>
#include <cstddef>
#include <cstdint>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
    ARM_COMPUTE_RETURN_ERROR_ON(min > max);

    // Check biases if exist
    if(bias != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
        ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
        ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
    }

    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8_SIGNED);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, input);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
{
    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output, input->clone()->set_data_type(DataType::QASYMM8_SIGNED));

    // Configure kernel window
    Window win = calculate_max_window(*input, Steps());

    // NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel doesn't need padding so update_window_and_padding() can be skipped
    Coordinates coord;
    coord.set_num_dimensions(output->num_dimensions());
    output->set_valid_region(ValidRegion(coord, output->tensor_shape()));

    return std::make_pair(Status{}, win);
}
} // namespace

template <bool is_bounded_relu>
void NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run(const Window &window)
{
    const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(_result_offset_after_shift);
    const int8x16_t min_s8                        = vdupq_n_s8(static_cast<int8_t>(_min));
    const int8x16_t max_s8                        = vdupq_n_s8(static_cast<int8_t>(_max));

    ARM_COMPUTE_UNUSED(min_s8, max_s8);

    const int  window_step_x  = 16;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator in(_input, win_collapsed);
    Iterator out(_output, win_collapsed);
    if(_bias != nullptr)
    {
        Window win_biases;
        win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
        win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));

        Iterator bias(_bias, win_biases);
        execute_window_loop(win_collapsed, [&](const Coordinates &)
        {
            // Compute 16 elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                int32x4x4_t in_s32 =
                {
                    {
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
                    }
                };

                const int32x4x4_t bias_s32 =
                {
                    {
                        vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
                        vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
                        vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
                        vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
                    }
                };

                // Add the bias to GEMM's result
                in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
                in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
                in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
                in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);

                vst1q_s8(reinterpret_cast<int8_t *>(out.ptr() + x),
                         finalize_quantization(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, min_s8, max_s8, is_bounded_relu));
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const int32_t bias_value = *(reinterpret_cast<const int32_t *>(bias.ptr()) + x);
                int32_t       in_value   = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);

                // Add bias
                in_value += bias_value;
                // Finalize and store the result
                *reinterpret_cast<int8_t *>(out.ptr() + x) = finalize_quantization(in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift,
                                                                                   static_cast<int8_t>(_min), static_cast<int8_t>(_max), is_bounded_relu);
            }
        },
        in, out, bias);
    }
    else
    {
        execute_window_loop(win_collapsed, [&](const Coordinates &)
        {
            // Compute 16 elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                int32x4x4_t in_s32 =
                {
                    {
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
                        vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
                    }
                };

                vst1q_s8(reinterpret_cast<int8_t *>(out.ptr() + x),
                         finalize_quantization(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, min_s8, max_s8, is_bounded_relu));
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const int32_t in_value = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);

                // Finalize and store the result
                *reinterpret_cast<int8_t *>(out.ptr() + x) = finalize_quantization(in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift,
                                                                                   static_cast<int8_t>(_min), static_cast<int8_t>(_max), is_bounded_relu);
            }
        },
        in, out);
    }
}

NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel()
    : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0), _min(0), _max(0)
{
}

void NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift,
                                                                         int result_offset_after_shift, int min, int max)
{
    // Perform validate step
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info(), min, max));

    _input                        = input;
    _bias                         = bias;
    _output                       = output;
    _result_fixedpoint_multiplier = result_fixedpoint_multiplier;
    _result_shift                 = result_shift;
    _result_offset_after_shift    = result_offset_after_shift;
    _min                          = min;
    _max                          = max;

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), output->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);

    // Check if we need to clamp the result using min and max
    const bool is_bounded_relu = !(min <= -128 && max >= 127);
    _func                      = is_bounded_relu ? &NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run<true> : &NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run<false>;
}

Status NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);

    return Status{};
}

void NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    (this->*_func)(window);
}
} // namespace arm_compute