aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nhwc/pooling_layer.cl
blob: 5b59ff508888b30a68ad6420a77c6019ace86e4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"
#include "repeat.h"
#include "tile_helpers.h"

#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#define POOL_OP(x, y) (fmax((x), (y)))
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
#define POW2_OP(x, vec_size) ((x) * (x))
#else /* defined(POOL_L2) */
#define POW2_OP(x, vec_size) (x)
#endif /* defined(POOL_L2) */

#define DIV_OP(x, y) (x * (1.f / y))
#define SQRT_OP(x) sqrt((x))

#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)

#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
/** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types:
 * -# max, -DPOOL_MAX must be passed at compile time
 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
 * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
 *
 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
 * @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4
 * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
 * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F32/F16
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
 * @param[in]  input_step_w                         input_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  output_step_w                        output_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_MxN_nhwc(
    TENSOR4D_DECLARATION(input),
    TENSOR4D_DECLARATION(output))
{
    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
    int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
    int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);
#if DST_BATCH_SIZE != 1
    // If batch size != 1, the batch size dimension is collapsed over the height dimension
    int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
    int idx_out_n = GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT;
#else  //DST_BATCH_SIZE != 1
    int idx_out_h   = GET_SPATIAL_IDX(2, 1, 0);
    int idx_out_n   = 0;
#endif // DST_BATCH_SIZE != 1

    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;

    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
                                           output_stride_w;

    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
    res0 = INITIAL_VALUE;

    int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
    int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;

    int pool_x_s = max((int)0, -idx_in_w);
    int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w);
    int pool_y_s = max((int)0, -idx_in_h);
    int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h);

#if defined(EXCLUDE_PADDING)
    int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
#else  // defined(EXCLUDE_PADDING)
    int filter_size = POOL_SIZE_X * POOL_SIZE_Y;
#endif // defined(EXCLUDE_PADDING)

#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
    // Global pooling path
    for(int y = 0; y < POOL_SIZE_Y; ++y)
    {
#pragma unroll 8
        for(int x = 0; x < POOL_SIZE_X; ++x)
        {
#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
    for(int y = pool_y_s; y < pool_y_e; ++y)
    {
#pragma unroll 8
        for(int x = pool_x_s; x < pool_x_e; ++x)
        {
#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
            VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
            data0;
#if defined(FP_MIXED_PRECISION)
            // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
            data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else  // defined(FP_MIXED_PRECISION)
            data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z));
#endif // defined(FP_MIXED_PRECISION)

#if defined(POOL_L2)
            // Raise to power of 2 for L2 Pooling
            data0 *= data0;
#endif // defined(POOL_L2)
            res0 = POOL_OP(res0, data0);
        }
    }

#if defined(POOL_AVG) || defined(POOL_L2)
    res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#endif // defined(POOL_AVG) || defined(POOL_L2)

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)

    // Store result
#if defined(FP_MIXED_PRECISION)
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
    STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else  // defined(FP_MIXED_PRECISION)
    STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

#define SELECT_TYPE SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)

/** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling types:
 * -# max, -DPOOL_MAX must be passed at compile time
 * -# max extracting the max index, -DPOOL_MAX and -DEXTRACT_MAX_INDEX must be passed at compile time
 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
 * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
 *
 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
 * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
 * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F32/F16
 * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_stride_w                        Stride of the source tensor in W dimension (in bytes)
 * @param[in]  input_step_w                          input_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
 * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                       Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_stride_w                       Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  output_step_w                         output_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           (Optional) Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      (Optional) Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        (Optional) indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      (Optional) Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        (Optional) indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      (Optional) Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        (Optional) indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_stride_w                      (Optional) Stride of the indices tensor in W dimension (in bytes)
 * @param[in]  indices_step_w                        (Optional) indices_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes (Optional) The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2x2_nhwc(
    TENSOR4D_DECLARATION(input),
    TENSOR4D_DECLARATION(output)
#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
    ,
    TENSOR4D_DECLARATION(indices)
#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
)
{
    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
    int idx_out_c = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
    int idx_out_w = get_global_id(1);
#if DST_BATCH_SIZE != 1
    // If batch size != 1, the batch size dimension is collapsed over the height dimension
    int idx_out_h = get_global_id(2) % DST_HEIGHT;
    int idx_out_n = get_global_id(2) / DST_HEIGHT;
#else  //SRC_BATCH_SIZE != 1
    int idx_out_h = get_global_id(2);
    int idx_out_n = 0;
#endif // SRC_BATCH_SIZE != 1

    int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
    int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;

    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;

    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
                                           output_stride_w;

    int pool_x_s = max((int)0, -idx_in_w);
    int pool_x_e = min((int)2, (int)SRC_WIDTH - idx_in_w);
    int pool_y_s = max((int)0, -idx_in_h);
    int pool_y_e = min((int)2, (int)SRC_HEIGHT - idx_in_h);

    int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);

    int x0 = pool_x_s + idx_in_w;
    int y0 = pool_y_s + idx_in_h;
    int x1 = pool_x_e - 1 + idx_in_w;
    int y1 = pool_y_e - 1 + idx_in_h;

    REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE), data, 0);

#if defined(FP_MIXED_PRECISION)
    // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
    data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
    data1 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
    data2 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
    data3 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else  // defined(FP_MIXED_PRECISION)
    data0         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z));
    data1         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z));
    data2         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z));
    data3         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z));
#endif // defined(FP_MIXED_PRECISION)

#if !defined(POOL_MAX)
    if(filter_size != 4)
    {
        SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
        SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)(SRC_WIDTH - 1);
        SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
        SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)(SRC_HEIGHT - 1);

        // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
        data0 = select(data0, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_s));
        data1 = select(data1, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_s));
        data2 = select(data2, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_e));
        data3 = select(data3, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_e));
    }
#endif // !defined(POOL_MAX)

#if defined(POOL_L2)
    // Raise to power of 2 for L2 Pooling
    data0 *= data0;
    data1 *= data1;
    data2 *= data2;
    data3 *= data3;
#endif /* defined(POOL_L2) */

    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
    res0 = data0;
    res0 = POOL_OP(res0, data1);
    res0 = POOL_OP(res0, data2);
    res0 = POOL_OP(res0, data3);

#if defined(POOL_AVG) || defined(POOL_L2)
#if defined(EXCLUDE_PADDING)
    res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#else  // !defined(EXCLUDE_PADDING)
    res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))4;
#endif // defined(EXCLUDE_PADDING)
#endif // defined(POOL_AVG) || defined(POOL_L2)

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)

    // Store result
#if defined(FP_MIXED_PRECISION)
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
    STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else  // defined(FP_MIXED_PRECISION)
    STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)

#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)

    // This part is used to return the index of the maximum value
    // Note: DST_CHANNELS and DST_BATCH_SIZE can be used for either the input and output tensor

    // note: Batch dimension does not contribute in the offset contribution
    VEC_DATA_TYPE(uint, VEC_SIZE)
    base_index = (uint)idx_out_c;

    base_index += VEC_OFFS(uint, VEC_SIZE);

    VEC_DATA_TYPE(uint, VEC_SIZE)
    index0 = base_index + (uint)x0 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
    VEC_DATA_TYPE(uint, VEC_SIZE)
    index1 = base_index + (uint)x1 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
    VEC_DATA_TYPE(uint, VEC_SIZE)
    index2 = base_index + (uint)x0 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);
    VEC_DATA_TYPE(uint, VEC_SIZE)
    index3 = base_index + (uint)x1 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);

    index0 = select(index1, index0, CONVERT(isgreaterequal(data0, data1), VEC_DATA_TYPE(int, VEC_SIZE)));
    index1 = select(index3, index2, CONVERT(isgreaterequal(data2, data3), VEC_DATA_TYPE(int, VEC_SIZE)));
    index0 = select(index1, index0, CONVERT(isgreaterequal(max(data0, data1), max(data2, data3)), VEC_DATA_TYPE(int, VEC_SIZE)));

    __global unsigned char *idx_base_ptr = indices_ptr + indices_offset_first_element_in_bytes + idx_out_c * sizeof(uint) + idx_out_w * indices_stride_y + idx_out_h * indices_stride_z + idx_out_n *
                                           indices_stride_w;

    // Store result
    STORE_VECTOR_SELECT(index, uint, idx_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0));
#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
}
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)