/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #include "repeat.h" #include "tile_helpers.h" #if defined(POOL_AVG) || defined(POOL_L2) #define POOL_OP(x, y) ((x) + (y)) #else /* defined(POOL_AVG) || defined(POOL_L2) */ #define POOL_OP(x, y) (fmax((x), (y))) #endif /* defined(POOL_AVG) || defined(POOL_L2) */ #if defined(POOL_L2) #define POW2_OP(x, vec_size) ((x) * (x)) #else /* defined(POOL_L2) */ #define POW2_OP(x, vec_size) (x) #endif /* defined(POOL_L2) */ #define DIV_OP(x, y) (x * (1.f / y)) #define SQRT_OP(x) sqrt((x)) #if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE) #if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) /** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types: * -# max, -DPOOL_MAX must be passed at compile time * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time * -# l2 normalisation, -DPOOL_L2 must be passed at compile time * * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result * @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4 * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void pooling_layer_MxN_nhwc( TENSOR4D_DECLARATION(input), TENSOR4D_DECLARATION(output)) { // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0 // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER); int idx_out_w = GET_SPATIAL_IDX(1, 1, 0); #if DST_BATCH_SIZE != 1 // If batch size != 1, the batch size dimension is collapsed over the height dimension int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT; int idx_out_n = GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT; #else //DST_BATCH_SIZE != 1 int idx_out_h = GET_SPATIAL_IDX(2, 1, 0); int idx_out_n = 0; #endif // DST_BATCH_SIZE != 1 __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w; __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n * output_stride_w; VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) res0 = INITIAL_VALUE; int idx_in_w = idx_out_w * STRIDE_X - PAD_X; int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y; int pool_x_s = max((int)0, -idx_in_w); int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w); int pool_y_s = max((int)0, -idx_in_h); int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h); #if defined(EXCLUDE_PADDING) int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s); #else // defined(EXCLUDE_PADDING) int filter_size = POOL_SIZE_X * POOL_SIZE_Y; #endif // defined(EXCLUDE_PADDING) #if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0 // Global pooling path for(int y = 0; y < POOL_SIZE_Y; ++y) { #pragma unroll 8 for(int x = 0; x < POOL_SIZE_X; ++x) { #else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0 for(int y = pool_y_s; y < pool_y_e; ++y) { #pragma unroll 8 for(int x = pool_x_s; x < pool_x_e; ++x) { #endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0 VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) data0; #if defined(FP_MIXED_PRECISION) // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); #else // defined(FP_MIXED_PRECISION) data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)); #endif // defined(FP_MIXED_PRECISION) #if defined(POOL_L2) // Raise to power of 2 for L2 Pooling data0 *= data0; #endif // defined(POOL_L2) res0 = POOL_OP(res0, data0); } } #if defined(POOL_AVG) || defined(POOL_L2) res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size; #endif // defined(POOL_AVG) || defined(POOL_L2) #if defined(POOL_L2) // Take square root of the result in L2 pooling res0 = SQRT_OP(res0); #endif // defined(POOL_L2) // Store result #if defined(FP_MIXED_PRECISION) VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); #else // defined(FP_MIXED_PRECISION) STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); #endif // defined(FP_MIXED_PRECISION) } #endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) #define SELECT_TYPE SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) /** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling types: * -# max, -DPOOL_MAX must be passed at compile time * -# max extracting the max index, -DPOOL_MAX and -DEXTRACT_MAX_INDEX must be passed at compile time * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time * -# l2 normalisation, -DPOOL_L2 must be passed at compile time * * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] indices_ptr (Optional) Pointer to the indices tensor. Supported data types: U32 * @param[in] indices_stride_x (Optional) Stride of the indices tensor in X dimension (in bytes) * @param[in] indices_step_x (Optional) indices_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] indices_stride_y (Optional) Stride of the indices tensor in Y dimension (in bytes) * @param[in] indices_step_y (Optional) indices_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] indices_stride_z (Optional) Stride of the indices tensor in Z dimension (in bytes) * @param[in] indices_step_z (Optional) indices_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] indices_stride_w (Optional) Stride of the indices tensor in W dimension (in bytes) * @param[in] indices_step_w (Optional) indices_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] indices_offset_first_element_in_bytes (Optional) The offset of the first element in the indices tensor */ __kernel void pooling_layer_2x2_nhwc( TENSOR4D_DECLARATION(input), TENSOR4D_DECLARATION(output) #if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) , TENSOR4D_DECLARATION(indices) #endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) ) { // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0 // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side int idx_out_c = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); int idx_out_w = get_global_id(1); #if DST_BATCH_SIZE != 1 // If batch size != 1, the batch size dimension is collapsed over the height dimension int idx_out_h = get_global_id(2) % DST_HEIGHT; int idx_out_n = get_global_id(2) / DST_HEIGHT; #else //SRC_BATCH_SIZE != 1 int idx_out_h = get_global_id(2); int idx_out_n = 0; #endif // SRC_BATCH_SIZE != 1 int idx_in_w = idx_out_w * STRIDE_X - PAD_X; int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y; __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w; __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n * output_stride_w; int pool_x_s = max((int)0, -idx_in_w); int pool_x_e = min((int)2, (int)SRC_WIDTH - idx_in_w); int pool_y_s = max((int)0, -idx_in_h); int pool_y_e = min((int)2, (int)SRC_HEIGHT - idx_in_h); int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s); int x0 = pool_x_s + idx_in_w; int y0 = pool_y_s + idx_in_h; int x1 = pool_x_e - 1 + idx_in_w; int y1 = pool_y_e - 1 + idx_in_h; REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE), data, 0); #if defined(FP_MIXED_PRECISION) // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); data1 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); data2 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); data3 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); #else // defined(FP_MIXED_PRECISION) data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)); data1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)); data2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)); data3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)); #endif // defined(FP_MIXED_PRECISION) #if !defined(POOL_MAX) if(filter_size != 4) { SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0; SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)(SRC_WIDTH - 1); SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0; SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)(SRC_HEIGHT - 1); // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound) data0 = select(data0, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_s)); data1 = select(data1, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_s)); data2 = select(data2, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_e)); data3 = select(data3, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_e)); } #endif // !defined(POOL_MAX) #if defined(POOL_L2) // Raise to power of 2 for L2 Pooling data0 *= data0; data1 *= data1; data2 *= data2; data3 *= data3; #endif /* defined(POOL_L2) */ VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) res0 = data0; res0 = POOL_OP(res0, data1); res0 = POOL_OP(res0, data2); res0 = POOL_OP(res0, data3); #if defined(POOL_AVG) || defined(POOL_L2) #if defined(EXCLUDE_PADDING) res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size; #else // !defined(EXCLUDE_PADDING) res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))4; #endif // defined(EXCLUDE_PADDING) #endif // defined(POOL_AVG) || defined(POOL_L2) #if defined(POOL_L2) // Take square root of the result in L2 pooling res0 = SQRT_OP(res0); #endif // defined(POOL_L2) // Store result #if defined(FP_MIXED_PRECISION) VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); #else // defined(FP_MIXED_PRECISION) STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); #endif // defined(FP_MIXED_PRECISION) #if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) // This part is used to return the index of the maximum value // Note: DST_CHANNELS and DST_BATCH_SIZE can be used for either the input and output tensor // note: Batch dimension does not contribute in the offset contribution VEC_DATA_TYPE(uint, VEC_SIZE) base_index = (uint)idx_out_c; base_index += VEC_OFFS(uint, VEC_SIZE); VEC_DATA_TYPE(uint, VEC_SIZE) index0 = base_index + (uint)x0 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH); VEC_DATA_TYPE(uint, VEC_SIZE) index1 = base_index + (uint)x1 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH); VEC_DATA_TYPE(uint, VEC_SIZE) index2 = base_index + (uint)x0 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH); VEC_DATA_TYPE(uint, VEC_SIZE) index3 = base_index + (uint)x1 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH); index0 = select(index1, index0, CONVERT(isgreaterequal(data0, data1), VEC_DATA_TYPE(int, VEC_SIZE))); index1 = select(index3, index2, CONVERT(isgreaterequal(data2, data3), VEC_DATA_TYPE(int, VEC_SIZE))); index0 = select(index1, index0, CONVERT(isgreaterequal(max(data0, data1), max(data2, data3)), VEC_DATA_TYPE(int, VEC_SIZE))); __global unsigned char *idx_base_ptr = indices_ptr + indices_offset_first_element_in_bytes + idx_out_c * sizeof(uint) + idx_out_w * indices_stride_y + idx_out_h * indices_stride_z + idx_out_n * indices_stride_w; // Store result STORE_VECTOR_SELECT(index, uint, idx_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0)); #endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) } #endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)