aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nchw/pooling_layer.cl
blob: 15ad11628932333458a73aa1d3895409c09a0e79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#if defined(QUANTIZED)
#define POOL_OP(x, y) (max((x), (y)))
#else // defined(QUANTIZED)
#define POOL_OP(x, y) (fmax((x), (y)))
#endif // defined(QUANTIZED)
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
#define POW2_OP(x, vec_size) ((x) * (x))
#else /* defined(POOL_L2) */
#define POW2_OP(x, vec_size) (x)
#endif /* defined(POOL_L2) */

#define DIV_OP(x, y) (x * (1.f / y))
#define SQRT_OP(x) sqrt((x))

#if defined(FP_MIXED_PRECISION) || defined(QUANTIZED)
#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
#else /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
#endif /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/

ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
                                  const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int       start_x = get_global_id(0) * stride_x - pad_x;
    int       start_y = get_global_id(1) * stride_y - pad_y;
    const int end_x   = min(start_x + pool_size_x, upper_bound_w);
    const int end_y   = min(start_y + pool_size_y, upper_bound_h);
#if defined(EXCLUDE_PADDING)
    start_x = max(0, start_x);
    start_y = max(0, start_y);
#endif /* defined(EXCLUDE_PADDING) */
    return ((end_y - start_y) * (end_x - start_x));
}

#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

/** Performs a pooling function of pool size equal to N  (NCHW)
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32/QASYMM8;
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16/F32/QASYMM8
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_MxN_nchw(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    int id0 = get_global_id(0);
    int id1 = get_global_id(1);
    int id2 = get_global_id(2);

    int x_coords = (id0 * STRIDE_X) - PAD_X;
    int y_coords = (id1 * STRIDE_Y) - PAD_Y;

    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + y_coords * (int)src_stride_y + id2 * src_stride_z;

    VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
    vdata               = INITIAL_VALUE;
    ACC_DATA_TYPE sdata = INITIAL_VALUE;

    const int end_x = min((int)POOL_SIZE_X, (int)(SRC_WIDTH - x_coords));
    const int end_y = min((int)POOL_SIZE_Y, (int)(SRC_HEIGHT - y_coords));

    // Load data
    for(int y = 0; y < end_y; ++y)
    {
        if((y_coords + y) >= 0)
        {
            int x = 0;
            for(; x <= (end_x - 8); x += 8)
            {
                int8 src_x = (int8)(x_coords + x) + VEC_OFFS(int, 8);
#if defined(POOL_AVG) || defined(POOL_L2)
                SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
                cond_x = CONVERT(src_x < 0, SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8));
                src_x  = clamp(src_x, (int8)0, (int8)(SRC_WIDTH - 1));
                VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
                data0 = select(VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y)), (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))0, REVERSE(cond_x, 8));
#else  // defined(POOL_AVG) || defined(POOL_L2)
                src_x = clamp(src_x, 0, SRC_WIDTH - 1);
                VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
                data0               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y));
#endif // defined(POOL_AVG) || defined(POOL_L2

#if defined(POOL_L2)
                // Raise to power of 2 for L2 Pooling
                data0 *= data0;
#endif /* defined(POOL_L2) */

                vdata = POOL_OP(vdata, data0);
            }

            // Leftover
            for(; x < end_x; ++x)
            {
                int src_x = x_coords + x;
#if defined(POOL_AVG) || defined(POOL_L2)
                SELECT_DATA_TYPE(ACC_DATA_TYPE)
                cond_x              = (src_x < 0);
                src_x               = clamp(src_x, 0, SRC_WIDTH - 1);
                ACC_DATA_TYPE data0 = select((ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y))), (ACC_DATA_TYPE)0, cond_x);
#else  // defined(POOL_AVG) || defined(POOL_L2)
                src_x               = clamp(src_x, 0, SRC_WIDTH - 1);
                ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y)));
#endif // defined(POOL_AVG) || defined(POOL_L2)

#if defined(POOL_L2)
                // Raise to power of 2 for L2 Pooling
                data0 *= data0;
#endif /* defined(POOL_L2) */

                sdata = POOL_OP(sdata, data0);
            }
        }
    }

    // Reduce result
    VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
    reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
    reduce2           = POOL_OP(reduce4.s01, reduce4.s23);
    ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1);
    res               = POOL_OP(res, sdata);

#if defined(POOL_AVG) || defined(POOL_L2)
    // Divide by pool region in case of average pooling
    res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(QUANTIZED)

    DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE);

#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)

    const float result_f32   = convert_float(result_q8);
    const float input_offset = (float)OFFSET_IN1;
    const float input_scale  = (float)SCALE_IN1;
    const float scale_out    = (float)SCALE_OUT;
    const float offset_out   = (float)OFFSET_OUT;
    const float in_f32       = (result_f32 - input_offset) * input_scale;
    const float out_f32      = in_f32 / scale_out + offset_out;
    result_q8                = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE);

#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */

    *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = result_q8;

#else // defined(QUANTIZED)

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res = SQRT_OP(res);
#endif /* defined(POOL_L2) */

    // Store result
    *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = (DATA_TYPE)res;
#endif // defined(QUANTIZED)
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *
 * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor
 * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_stride_z                          Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2_nchw_indices(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst),
    TENSOR3D_DECLARATION(indices))
{
    int id0 = get_global_id(0);
    int id1 = get_global_id(1);
    int id2 = get_global_id(2);

    int2 x_coords = clamp((int2)((id0 * STRIDE_X) - PAD_X), (int2)0, (int2)(SRC_WIDTH - 1));
    int2 y_coords = clamp((int2)((id1 * STRIDE_Y) - PAD_Y) + VEC_OFFS(int, 2), (int2)0, (int2)(SRC_HEIGHT - 1));

    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + id2 * src_stride_z;

    // Load data
    VEC_DATA_TYPE(DATA_TYPE, 2)
    data0 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s0 * sizeof(DATA_TYPE) + y_coords.s0 * (int)src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, 2)
    data1 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s1 * sizeof(DATA_TYPE) + y_coords.s1 * (int)src_stride_y));

    // Perform calculations
    DATA_TYPE data0_max = POOL_OP(data0.s0, data0.s1);
    DATA_TYPE data1_max = POOL_OP(data1.s0, data1.s1);
    DATA_TYPE res       = POOL_OP(data0_max, data1_max);
    // Store result
    *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = res;

#if defined(SRC_BATCH)

    uint offset_top    = (x_coords.s0 + y_coords.s0 * SRC_WIDTH + id2 * (SRC_WIDTH * SRC_HEIGHT)) % SRC_BATCH;
    uint offset_bottom = offset_top + SRC_WIDTH;

    uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
    uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
    uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));

    *(__global uint *)(indices_ptr + indices_offset_first_element_in_bytes + id0 * sizeof(uint) + id1 * indices_stride_y + id2 * indices_stride_z) = index;

#endif // defined(SRC_BATCH)
}