/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(POOL_AVG) || defined(POOL_L2) #define POOL_OP(x, y) ((x) + (y)) #else /* defined(POOL_AVG) || defined(POOL_L2) */ #if defined(QUANTIZED) #define POOL_OP(x, y) (max((x), (y))) #else // defined(QUANTIZED) #define POOL_OP(x, y) (fmax((x), (y))) #endif // defined(QUANTIZED) #endif /* defined(POOL_AVG) || defined(POOL_L2) */ #if defined(POOL_L2) #define POW2_OP(x, vec_size) ((x) * (x)) #else /* defined(POOL_L2) */ #define POW2_OP(x, vec_size) (x) #endif /* defined(POOL_L2) */ #define DIV_OP(x, y) (x * (1.f / y)) #define SQRT_OP(x) sqrt((x)) #if defined(FP_MIXED_PRECISION) || defined(QUANTIZED) #define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n)) #define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n) #else /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/ #define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr) #endif /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/ ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y) { int start_x = get_global_id(0) * stride_x - pad_x; int start_y = get_global_id(1) * stride_y - pad_y; const int end_x = min(start_x + pool_size_x, upper_bound_w); const int end_y = min(start_y + pool_size_y, upper_bound_h); #if defined(EXCLUDE_PADDING) start_x = max(0, start_x); start_y = max(0, start_y); #endif /* defined(EXCLUDE_PADDING) */ return ((end_y - start_y) * (end_x - start_x)); } #if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) /** Performs a pooling function of pool size equal to N (NCHW) * * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32/QASYMM8; * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13; * @note In case of average pooling the following information must be passed at compile time: * -DPOOL_AVG must be provided otherwise max pooling will be performed. * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad) * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32/QASYMM8 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void pooling_layer_MxN_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int id0 = get_global_id(0); int id1 = get_global_id(1); int id2 = get_global_id(2); int x_coords = (id0 * STRIDE_X) - PAD_X; int y_coords = (id1 * STRIDE_Y) - PAD_Y; __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + y_coords * (int)src_stride_y + id2 * src_stride_z; VEC_DATA_TYPE(ACC_DATA_TYPE, 8) vdata = INITIAL_VALUE; ACC_DATA_TYPE sdata = INITIAL_VALUE; const int end_x = min((int)POOL_SIZE_X, (int)(SRC_WIDTH - x_coords)); const int end_y = min((int)POOL_SIZE_Y, (int)(SRC_HEIGHT - y_coords)); // Load data for(int y = 0; y < end_y; ++y) { if((y_coords + y) >= 0) { int x = 0; for(; x <= (end_x - 8); x += 8) { int8 src_x = (int8)(x_coords + x) + VEC_OFFS(int, 8); #if defined(POOL_AVG) || defined(POOL_L2) SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8) cond_x = CONVERT(src_x < 0, SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8)); src_x = clamp(src_x, (int8)0, (int8)(SRC_WIDTH - 1)); VEC_DATA_TYPE(ACC_DATA_TYPE, 8) data0 = select(VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y)), (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))0, REVERSE(cond_x, 8)); #else // defined(POOL_AVG) || defined(POOL_L2) src_x = clamp(src_x, 0, SRC_WIDTH - 1); VEC_DATA_TYPE(ACC_DATA_TYPE, 8) data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y)); #endif // defined(POOL_AVG) || defined(POOL_L2 #if defined(POOL_L2) // Raise to power of 2 for L2 Pooling data0 *= data0; #endif /* defined(POOL_L2) */ vdata = POOL_OP(vdata, data0); } // Leftover for(; x < end_x; ++x) { int src_x = x_coords + x; #if defined(POOL_AVG) || defined(POOL_L2) SELECT_DATA_TYPE(ACC_DATA_TYPE) cond_x = (src_x < 0); src_x = clamp(src_x, 0, SRC_WIDTH - 1); ACC_DATA_TYPE data0 = select((ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y))), (ACC_DATA_TYPE)0, cond_x); #else // defined(POOL_AVG) || defined(POOL_L2) src_x = clamp(src_x, 0, SRC_WIDTH - 1); ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y))); #endif // defined(POOL_AVG) || defined(POOL_L2) #if defined(POOL_L2) // Raise to power of 2 for L2 Pooling data0 *= data0; #endif /* defined(POOL_L2) */ sdata = POOL_OP(sdata, data0); } } } // Reduce result VEC_DATA_TYPE(ACC_DATA_TYPE, 4) reduce4 = POOL_OP(vdata.s0123, vdata.s4567); VEC_DATA_TYPE(ACC_DATA_TYPE, 2) reduce2 = POOL_OP(reduce4.s01, reduce4.s23); ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1); res = POOL_OP(res, sdata); #if defined(POOL_AVG) || defined(POOL_L2) // Divide by pool region in case of average pooling res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y)); #endif /* defined(POOL_AVG) || defined(POOL_L2) */ #if defined(QUANTIZED) DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) const float result_f32 = convert_float(result_q8); const float input_offset = (float)OFFSET_IN1; const float input_scale = (float)SCALE_IN1; const float scale_out = (float)SCALE_OUT; const float offset_out = (float)OFFSET_OUT; const float in_f32 = (result_f32 - input_offset) * input_scale; const float out_f32 = in_f32 / scale_out + offset_out; result_q8 = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = result_q8; #else // defined(QUANTIZED) #if defined(POOL_L2) // Take square root of the result in L2 pooling res = SQRT_OP(res); #endif /* defined(POOL_L2) */ // Store result *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = (DATA_TYPE)res; #endif // defined(QUANTIZED) } #endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) /** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW. * * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13; * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] indices_ptr Pointer to the indices tensor. Supported data types: U32 * @param[in] indices_stride_x Stride of the indices tensor in X dimension (in bytes) * @param[in] indices_step_x indices_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] indices_stride_y Stride of the indices tensor in Y dimension (in bytes) * @param[in] indices_step_y indices_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] indices_stride_z Stride of the indices tensor in Z dimension (in bytes) * @param[in] indices_step_z indices_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] indices_offset_first_element_in_bytes The offset of the first element in the indices tensor */ __kernel void pooling_layer_2_nchw_indices( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), TENSOR3D_DECLARATION(indices)) { int id0 = get_global_id(0); int id1 = get_global_id(1); int id2 = get_global_id(2); int2 x_coords = clamp((int2)((id0 * STRIDE_X) - PAD_X), (int2)0, (int2)(SRC_WIDTH - 1)); int2 y_coords = clamp((int2)((id1 * STRIDE_Y) - PAD_Y) + VEC_OFFS(int, 2), (int2)0, (int2)(SRC_HEIGHT - 1)); __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + id2 * src_stride_z; // Load data VEC_DATA_TYPE(DATA_TYPE, 2) data0 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s0 * sizeof(DATA_TYPE) + y_coords.s0 * (int)src_stride_y)); VEC_DATA_TYPE(DATA_TYPE, 2) data1 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s1 * sizeof(DATA_TYPE) + y_coords.s1 * (int)src_stride_y)); // Perform calculations DATA_TYPE data0_max = POOL_OP(data0.s0, data0.s1); DATA_TYPE data1_max = POOL_OP(data1.s0, data1.s1); DATA_TYPE res = POOL_OP(data0_max, data1_max); // Store result *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = res; #if defined(SRC_BATCH) uint offset_top = (x_coords.s0 + y_coords.s0 * SRC_WIDTH + id2 * (SRC_WIDTH * SRC_HEIGHT)) % SRC_BATCH; uint offset_bottom = offset_top + SRC_WIDTH; uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1)); uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1)); uint index = select(index1, index0, isgreaterequal(data0_max, data1_max)); *(__global uint *)(indices_ptr + indices_offset_first_element_in_bytes + id0 * sizeof(uint) + id1 * indices_stride_y + id2 * indices_stride_z) = index; #endif // defined(SRC_BATCH) }