aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/fixed_point.h
blob: 46fa645c2ba8caf10432976297c61997810b477e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_FIXED_POINT_H
#define ARM_COMPUTE_FIXED_POINT_H

#define TYPE_ALIAS(type, alias)  \
    typedef type alias;          \
    typedef type alias##x##1;    \
    typedef type##2 alias##x##2; \
    typedef type##3 alias##x##3; \
    typedef type##4 alias##x##4; \
    typedef type##8 alias##x##8; \
    typedef type##16 alias##x##16;

TYPE_ALIAS(char, qs8)
TYPE_ALIAS(short, qs16)
TYPE_ALIAS(int, qs32)

#define qs8_MIN ((char)CHAR_MIN)
#define qs8_MAX ((char)CHAR_MAX)
#define qs16_MIN ((short)SHRT_MIN)
#define qs16_MAX ((short)SHRT_MAX)
#define qs32_MIN ((int)INT_MIN)
#define qs32_MAX ((int)INT_MAX)

#define qu8_MIN ((uchar)0)
#define qu8_MAX ((uchar)UCHAR_MAX)
#define qu16_MIN ((ushort)0)
#define qu16_MAX ((ushort)USHRT_MAX)
#define qu32_MIN ((uint)0)
#define qu32_MAX ((uint)UINT_MAX)

#define qs8_TYPE char
#define qs8x1_TYPE char
#define qs8x2_TYPE char2
#define qs8x3_TYPE char3
#define qs8x4_TYPE char4
#define qs8x8_TYPE char8
#define qs8x16_TYPE char16

#define qs16_TYPE short
#define qs16x1_TYPE short
#define qs16x2_TYPE short2
#define qs16x3_TYPE short3
#define qs16x4_TYPE short4
#define qs16x8_TYPE short8
#define qs16x16_TYPE short16

#define qs32_TYPE int
#define qs32x1_TYPE int
#define qs32x2_TYPE int2
#define qs32x3_TYPE int3
#define qs32x4_TYPE int4
#define qs32x8_TYPE int8
#define qs32x16_TYPE int16

/* All internal constants are represented in the maximum supported fixed point format (QS16),
 * thus we define an additional shift parameter required to convert the constant
 * from the maximum supported format to the require one.
 */
#define qs8_SHIFT 8
#define qs16_SHIFT 0

#undef VEC_DATA_TYPE_STR
#undef VEC_DATA_TYPE
#undef CONVERT_STR
#undef CONVERT
#undef CONVERT_SAT_STR
#undef CONVERT_SAT

#define VEC_DATA_TYPE_STR(type, size) type##x##size
#define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)

#define CONVERT_STR3(x, type, rtype) (convert_##rtype((x)))
#define CONVERT_STR2(x, type, rtype) CONVERT_STR3(x, type, rtype)
#define CONVERT_STR(x, type) CONVERT_STR2(x, type, type##_TYPE)
#define CONVERT(x, type) CONVERT_STR(x, type)

#define CONVERT_SAT_STR3(x, type, rtype) (convert_##rtype##_sat((x)))
#define CONVERT_SAT_STR2(x, type, rtype) CONVERT_SAT_STR3(x, type, rtype)
#define CONVERT_SAT_STR(x, type) CONVERT_SAT_STR2(x, type, type##_TYPE)
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)

/** Computes saturating absolute value of fixed point vector.
 *
 * @param[in] type the actual data type.
 *
 * @return The result of the fixed point absolute value.
 */
#define ABSQ_SAT_IMPL(type)                  \
    inline type abs_##type##_sat(type VopA)  \
    {                                        \
        return CONVERT_SAT(abs(VopA), type); \
    }

ABSQ_SAT_IMPL(qs8x16)
ABSQ_SAT_IMPL(qs16x8)

#define ABS_SAT_OP_EXPAND_STR(a, type, size) abs_##type##x##size##_sat((a))
#define ABS_SAT_OP_EXPAND(a, type, size) ABS_SAT_OP_EXPAND_STR(a, type, size)

/** Computes max of fixed point types.
 *
 * @param[in] type the actual data type.
 *
 * @return The result of the fixed point maximum.
 */
#define MAXQ_IMPL(type)                          \
    inline type max_##type(type VopA, type VopB) \
    {                                            \
        return max(VopA, VopB);                  \
    }

MAXQ_IMPL(qs8x1)
MAXQ_IMPL(qs8x2)
MAXQ_IMPL(qs8x4)
MAXQ_IMPL(qs8x8)
MAXQ_IMPL(qs8x16)
MAXQ_IMPL(qs16x1)
MAXQ_IMPL(qs16x2)
MAXQ_IMPL(qs16x4)
MAXQ_IMPL(qs16x8)
MAXQ_IMPL(qs16x16)

#define MAX_OP_EXPAND_STR(a, b, type, size) max_##type##x##size((a), (b))
#define MAX_OP_EXPAND(a, b, type, size) MAX_OP_EXPAND_STR(a, b, type, size)

/** Computes saturated addition of fixed point types.
 *
 * @param[in] type the actual data type.
 *
 * @return The result of the fixed point addition. The result is saturated in case of overflow
 */
#define ADDQ_SAT_IMPL(type)                          \
    inline type add_sat_##type(type VopA, type VopB) \
    {                                                \
        return add_sat(VopA, VopB);                  \
    }

ADDQ_SAT_IMPL(qs8x1)
ADDQ_SAT_IMPL(qs8x2)
ADDQ_SAT_IMPL(qs8x4)
ADDQ_SAT_IMPL(qs8x8)
ADDQ_SAT_IMPL(qs8x16)
ADDQ_SAT_IMPL(qs16x1)
ADDQ_SAT_IMPL(qs16x2)
ADDQ_SAT_IMPL(qs16x4)
ADDQ_SAT_IMPL(qs16x8)
ADDQ_SAT_IMPL(qs16x16)
ADDQ_SAT_IMPL(qs32x1)
ADDQ_SAT_IMPL(qs32x2)
ADDQ_SAT_IMPL(qs32x4)
ADDQ_SAT_IMPL(qs32x8)
ADDQ_SAT_IMPL(qs32x16)

#define ADD_SAT_OP_EXPAND_STR(a, b, type, size) add_sat_##type##x##size((a), (b))
#define ADD_SAT_OP_EXPAND(a, b, type, size) ADD_SAT_OP_EXPAND_STR(a, b, type, size)

/** Computes saturated subtraction of fixed point types.
 *
 * @param[in] type the actual data type.
 *
 * @return The result of the fixed point subtraction. The result is saturated in case of overflow
 */
#define SUBQ_SAT_IMPL(type)                          \
    inline type sub_sat_##type(type VopA, type VopB) \
    {                                                \
        return sub_sat(VopA, VopB);                  \
    }

SUBQ_SAT_IMPL(qs8x1)
SUBQ_SAT_IMPL(qs8x2)
SUBQ_SAT_IMPL(qs8x4)
SUBQ_SAT_IMPL(qs8x8)
SUBQ_SAT_IMPL(qs8x16)
SUBQ_SAT_IMPL(qs16x1)
SUBQ_SAT_IMPL(qs16x2)
SUBQ_SAT_IMPL(qs16x4)
SUBQ_SAT_IMPL(qs16x8)
SUBQ_SAT_IMPL(qs16x16)

#define SUB_SAT_OP_EXPAND_STR(a, b, type, size) sub_sat_##type##x##size((a), (b))
#define SUB_SAT_OP_EXPAND(a, b, type, size) SUB_SAT_OP_EXPAND_STR(a, b, type, size)

/* Multiply of two fixed point numbers
 *
 * @param[in] type  the actual data type.
 * @param[in] itype the intermediate data type.
 *
 * @return The result of the fixed point multiplication.
 */
#define MULQ_IMPL(type, itype)                                                         \
    inline type mul_##type(type VopA, type VopB, int fixed_point_position)             \
    {                                                                                  \
        itype round_val = (itype)(1 << (fixed_point_position - 1));                    \
        itype res       = CONVERT((VopA), itype) * CONVERT((VopB), itype) + round_val; \
        return CONVERT((res >> (itype)fixed_point_position), type);                    \
    }

MULQ_IMPL(qs8x8, qs16x8)
MULQ_IMPL(qs16x8, qs32x8)
MULQ_IMPL(qs8x16, qs16x16)
MULQ_IMPL(qs16x16, qs32x16)

#define MUL_OP_EXPAND_STR(a, b, type, size, position) mul_##type##x##size((a), (b), (position))
#define MUL_OP_EXPAND(a, b, type, size, position) MUL_OP_EXPAND_STR(a, b, type, size, position)

/* Saturate multiply of two fixed point numbers
 *
 * @param[in] type  the actual data type.
 * @param[in] itype the intermediate data type.
 *
 * @return The result of the fixed point multiplication. The result is saturated in case of overflow
 */
#define MULQ_SAT_IMPL(type, itype)                                                            \
    inline type mul_sat_##type(type VopA, type VopB, int fixed_point_position)                \
    {                                                                                         \
        itype round_val = (itype)(1 << (fixed_point_position - 1));                           \
        itype res       = mad_sat(CONVERT((VopA), itype), CONVERT((VopB), itype), round_val); \
        return CONVERT_SAT((res >> (itype)fixed_point_position), type);                       \
    }

MULQ_SAT_IMPL(qs8x1, qs16x1)
MULQ_SAT_IMPL(qs8x2, qs16x2)
MULQ_SAT_IMPL(qs8x3, qs16x3)
MULQ_SAT_IMPL(qs8x4, qs16x4)
MULQ_SAT_IMPL(qs8x8, qs16x8)
MULQ_SAT_IMPL(qs8x16, qs16x16)
MULQ_SAT_IMPL(qs16x1, qs32x1)
MULQ_SAT_IMPL(qs16x2, qs32x2)
MULQ_SAT_IMPL(qs16x3, qs32x3)
MULQ_SAT_IMPL(qs16x4, qs32x4)
MULQ_SAT_IMPL(qs16x8, qs32x8)
MULQ_SAT_IMPL(qs16x16, qs32x16)

#define MUL_SAT_OP_EXPAND_STR(a, b, type, size, position) mul_sat_##type##x##size((a), (b), (position))
#define MUL_SAT_OP_EXPAND(a, b, type, size, position) MUL_SAT_OP_EXPAND_STR(a, b, type, size, position)

/** Saturate multiply-accumulate
 *
 * @param[in] type  the actual data type.
 * @param[in] itype the intermediate data type.
 *
 * @return The result of the fixed point multiply-accumulate. The result is saturated in case of overflow
 */
#define MLAQ_SAT_IMPL(type, itype)                                                                                 \
    type mla_sat_##type(type VopA, type VopB, type VopC, int fixed_point_position)                                 \
    {                                                                                                              \
        itype res = mad_sat(CONVERT(VopB, itype), CONVERT(VopC, itype), (itype)(1 << (fixed_point_position - 1))); \
        return add_sat(VopA, CONVERT_SAT(res >> (itype)fixed_point_position, type));                               \
    }

MLAQ_SAT_IMPL(qs8x8, qs16x8)
MLAQ_SAT_IMPL(qs8x16, qs16x16)
MLAQ_SAT_IMPL(qs16x8, qs32x8)

#define MLA_SAT_OP_EXPAND_STR(a, b, c, type, size, position) mla_sat_##type##x##size((a), (b), (c), (position))
#define MLA_SAT_OP_EXPAND(a, b, c, type, size, position) MLA_SAT_OP_EXPAND_STR(a, b, c, type, size, position)

/** Saturate multiply-accumulate long
 *
 * @param[in] type  the actual data type.
 * @param[in] itype the intermediate data type.
 *
 * @return The result of the fixed point multiply-accumulate long. The result is saturated in case of overflow
 */
#define MLALQ_SAT_IMPL(type, itype)                                                                                \
    itype mlal_sat_##type(itype VopA, type VopB, type VopC, int fixed_point_position)                              \
    {                                                                                                              \
        itype res = mad_sat(CONVERT(VopB, itype), CONVERT(VopC, itype), (itype)(1 << (fixed_point_position - 1))); \
        return add_sat(VopA, res >> (itype)fixed_point_position);                                                  \
    }

MLALQ_SAT_IMPL(qs8x8, qs16x8)
MLALQ_SAT_IMPL(qs16x8, qs32x8)

#define MLAL_SAT_OP_EXPAND_STR(a, b, c, type, size, position) mlal_sat_##type##x##size((a), (b), (c), (position))
#define MLAL_SAT_OP_EXPAND(a, b, c, type, size, position) MLAL_SAT_OP_EXPAND_STR(a, b, c, type, size, position)

/** Saturate division of two fixed point vectors
 *
 * @param[in] stype the actual scalar data type.
 * @param[in] type  the actual data type.
 * @param[in] itype the intermediate data type.
 *
 * @return The result of the fixed point division. The result is saturated in case of overflow
 */
#define DIVQ_SAT_IMPL(stype, type, itype)                                                                                                                                           \
    inline type div_sat_##type(type VopA, type VopB, int fixed_point_position)                                                                                                      \
    {                                                                                                                                                                               \
        itype conv_a      = CONVERT((VopA), itype);                                                                                                                                 \
        itype denominator = CONVERT((VopB), itype);                                                                                                                                 \
        itype numerator   = conv_a << (itype)(fixed_point_position);                                                                                                                \
        itype res         = select((itype)(numerator / denominator), select((itype)stype##_MAX, (itype)stype##_MIN, (itype)(conv_a < (itype)0)), (itype)(denominator == (itype)0)); \
        return CONVERT_SAT((res), type);                                                                                                                                            \
    }

DIVQ_SAT_IMPL(qs8, qs8x16, qs16x16)
DIVQ_SAT_IMPL(qs16, qs16x8, qs32x8)
DIVQ_SAT_IMPL(qs16, qs16x16, qs32x16)
DIVQ_SAT_IMPL(qs8, qs8, qs16)
DIVQ_SAT_IMPL(qs16, qs16, qs32)

#define DIV_SAT_OP_EXPAND_STR(a, b, type, position) div_sat_##type((a), (b), (position))
#define DIV_SAT_OP_EXPAND(a, b, type, position) DIV_SAT_OP_EXPAND_STR(a, b, type, position)

#define DIV_SAT_OP_VEC_EXPAND_STR(a, b, type, size, position) div_sat_##type##x##size((a), (b), (position))
#define DIV_SAT_OP_VEC_EXPAND(a, b, type, size, position) DIV_SAT_OP_VEC_EXPAND_STR(a, b, type, size, position)

/** Saturate exponential of a fixed point vector
 *
 * @note Implemented approach uses taylor polynomial to approximate the exponential function.
 *
 * @param[in] stype the actual scalar data type.
 * @param[in] type  the actual data type.
 * @param[in] size  the number of the calculated elements.
 *
 * @return The result of the fixed point exponential. The result is saturated in case of overflow
 */
#define EXPQ_IMPL(stype, type, size)                                                                                                              \
    inline type exp_sat_##type(type VopA, int fixed_point_position)                                                                               \
    {                                                                                                                                             \
        type const_one = (type)(1 << (fixed_point_position));                                                                                     \
        type ln2       = (type)((((0x58B9 >> (14 - fixed_point_position))) + 1) >> 1);                                                            \
        type inv_ln2   = (type)((((0x38AA >> (14 - fixed_point_position)) + 1) >> 1)) | const_one;                                                \
        type A         = (type)(((0x7FBA >> (14 - fixed_point_position)) + 1) >> 1);                                                              \
        type B         = (type)(((0x3FE9 >> (14 - fixed_point_position)) + 1) >> 1);                                                              \
        type C         = (type)(((0x1693 >> (14 - fixed_point_position)) + 1) >> 1);                                                              \
        type D         = (type)(((0x0592 >> (14 - fixed_point_position)) + 1) >> 1);                                                              \
        type m         = MUL_SAT_OP_EXPAND(VopA, inv_ln2, stype, size, fixed_point_position);                                                     \
        type dec_m     = m >> (type)fixed_point_position;                                                                                         \
        type alpha     = MUL_SAT_OP_EXPAND(dec_m << (type)fixed_point_position, ln2, stype, size, fixed_point_position);                          \
        alpha          = CONVERT(abs_diff(VopA, alpha), type);                                                                                    \
        type sum       = add_sat(MUL_SAT_OP_EXPAND(alpha, D, stype, size, fixed_point_position), C);                                              \
        sum            = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), B);                                            \
        sum            = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), A);                                            \
        sum            = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), const_one);                                    \
        return select((type)stype##_MAX, select(sum << dec_m, sum >> -dec_m, dec_m < (type)0), clz(sum) > dec_m); /* Saturate result if needed */ \
    }

EXPQ_IMPL(qs8, qs8x2, 2)
EXPQ_IMPL(qs8, qs8x4, 4)
EXPQ_IMPL(qs8, qs8x8, 8)
EXPQ_IMPL(qs8, qs8x16, 16)
EXPQ_IMPL(qs16, qs16x2, 2)
EXPQ_IMPL(qs16, qs16x4, 4)
EXPQ_IMPL(qs16, qs16x8, 8)
EXPQ_IMPL(qs16, qs16x16, 16)

#define EXP_OP_EXPAND_STR(a, type, size, position) exp_sat_##type##x##size((a), (position))
#define EXP_OP_EXPAND(a, type, size, position) EXP_OP_EXPAND_STR(a, type, size, position)

/** Saturate logarithm of a fixed point vector
 *
 * @note Implemented approach uses taylor polynomial to approximate the logarithm function.
 *
 * @param[in] stype the actual scalar data type.
 * @param[in] type  the actual data type.
 * @param[in] size  the number of the calculated elements.
 *
 * @return The result of the fixed point logarithm. The result is saturated in case of overflow
 */
#define LOGQ_IMPL(stype, type, size)                                                                                                       \
    inline type log_sat_##type(type VopA, int fixed_point_position)                                                                        \
    {                                                                                                                                      \
        type const_one = (type)(1 << (fixed_point_position));                                                                              \
        type ln2       = (type)(0x58B9 >> (15 - fixed_point_position));  /* 1.4384189 */                                                   \
        type A         = (type)(0x5C0F >> (14 - fixed_point_position));  /* 1.4384189 */                                                   \
        type B         = -(type)(0x56AE >> (15 - fixed_point_position)); /* -0.6771900 */                                                  \
        type C         = (type)(0x2933 >> (15 - fixed_point_position));  /* 0.3218538 */                                                   \
        type D         = -(type)(0x0AA7 >> (15 - fixed_point_position)); /* -0.0832229 */                                                  \
        type inter_a   = select(VopA, DIV_SAT_OP_VEC_EXPAND(const_one, VopA, stype, size, fixed_point_position), VopA < const_one);        \
        type shift_val = (type)(15 - stype##_SHIFT) - clz(inter_a >> (type)fixed_point_position);                                          \
        inter_a        = inter_a >> shift_val;                                                                                             \
        inter_a        = sub_sat(inter_a, const_one);                                                                                      \
        type sum       = add_sat(MUL_SAT_OP_EXPAND(inter_a, D, stype, size, fixed_point_position), C);                                     \
        sum            = add_sat(MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position), B);                                   \
        sum            = add_sat(MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position), A);                                   \
        sum            = MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position);                                               \
        sum            = MUL_SAT_OP_EXPAND(add_sat(sum, shift_val << (type)fixed_point_position), ln2, stype, size, fixed_point_position); \
        return select(select(sum, -sum, VopA < const_one), (type)0, VopA < (type)0); /* Saturate result if needed */                       \
    }

LOGQ_IMPL(qs8, qs8x16, 16)
LOGQ_IMPL(qs16, qs16x8, 8)
LOGQ_IMPL(qs16, qs16x16, 16)

#define LOG_OP_EXPAND_STR(a, type, size, position) log_sat_##type##x##size((a), (position))
#define LOG_OP_EXPAND(a, type, size, position) LOG_OP_EXPAND_STR(a, type, size, position)

/** Saturate inverse square root of a fixed point vector
 *
 * @note Implemented approach uses Newton's method to approximate the inverse square root function.
 *
 * @param[in] stype the actual scalar data type.
 * @param[in] type  the actual data type.
 * @param[in] size  the number of the calculated elements.
 *
 * @return The result of the fixed point inverse square root. The result is saturated in case of overflow
 */
#define INVSQRTQ_IMPL(stype, type, size)                                                                                                                                                                                               \
    inline type invsqrt_sat_##type(type VopA, int fixed_point_position)                                                                                                                                                                \
    {                                                                                                                                                                                                                                  \
        type const_three = (type)(3 << (fixed_point_position));                                                                                                                                                                        \
        type shift_value = (type)(16 - stype##_SHIFT) - (clz(VopA) + (type)fixed_point_position);                                                                                                                                      \
        type temp        = select((type)(VopA >> shift_value), select((type)stype##_MAX, (type)(VopA << (-shift_value)), (type)(clz(VopA) > (-shift_value))), (type)(shift_value < (type)0));                                          \
        type x           = temp;                                                                                                                                                                                                       \
        x                = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
        x                = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
        x                = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
        if(sizeof((stype)(1)) > 1) /* Perform more iterations if datatype is QS16 */                                                                                                                                                   \
        {                                                                                                                                                                                                                              \
            x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1;            \
            x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1;            \
        }                                                                                                                                                                                                                              \
        type shift_value2 = select(shift_value >> 1, (-shift_value) >> 1, shift_value < (type)0);                                                                                                                                      \
        return select((type)(x >> shift_value2), select((type)stype##_MAX, (type)(x << shift_value2), (type)(clz(x) > shift_value2)), (type)(shift_value < (type)0)); /* Saturate result if needed */                                  \
    }

INVSQRTQ_IMPL(qs8, qs8x1, 1)
INVSQRTQ_IMPL(qs16, qs16x1, 1)
INVSQRTQ_IMPL(qs8, qs8x16, 16)
INVSQRTQ_IMPL(qs16, qs16x8, 8)

#define INVSQRT_OP_EXPAND_STR(a, type, size, position) invsqrt_sat_##type##x##size((a), (position))
#define INVSQRT_OP_EXPAND(a, type, size, position) INVSQRT_OP_EXPAND_STR(a, type, size, position)

/** Saturate hyperbolic tangent of a fixed point vector
 *
 * tanh(x) = (e^2x - 1)/(e^2x + 1)
 *
 * @param[in] stype the actual scalar data type.
 * @param[in] type  the actual data type.
 * @param[in] size  the number of the calculated elements.
 *
 * @return The result of the fixed point hyperbolic tangent. The result is saturated in case of overflow
 */
#define TANHQ_IMPL(stype, type, size)                                                                                                             \
    inline type tanh_sat_##type(type VopA, int fixed_point_position)                                                                              \
    {                                                                                                                                             \
        type const_one = (type)(1 << (fixed_point_position));                                                                                     \
        type const_two = (type)(2 << (fixed_point_position));                                                                                     \
        type exp2x     = EXP_OP_EXPAND(MUL_SAT_OP_EXPAND(const_two, VopA, stype, size, fixed_point_position), stype, size, fixed_point_position); \
        type num       = SUB_SAT_OP_EXPAND(exp2x, const_one, stype, size);                                                                        \
        type den       = ADD_SAT_OP_EXPAND(exp2x, const_one, stype, size);                                                                        \
        return DIV_SAT_OP_VEC_EXPAND(num, den, stype, size, fixed_point_position);                                                                \
    }

TANHQ_IMPL(qs8, qs8x16, 16)
TANHQ_IMPL(qs16, qs16x8, 8)

#define TANH_OP_EXPAND_STR(a, type, size, position) tanh_sat_##type##x##size((a), (position))
#define TANH_OP_EXPAND(a, type, size, position) TANH_OP_EXPAND_STR(a, type, size, position)

#define floatx16 float16
#define float16_TYPE float16

#define CONVERTQ_DOWN_IMPL(in_type, out_type)                                                                                        \
    inline out_type convert_##out_type##_##in_type(in_type a, int fixed_point_position)                                              \
    {                                                                                                                                \
        return CONVERT(a * (1 << fixed_point_position) + select((in_type)-0.5f, (in_type)0.5f, isgreater(a, (in_type)0)), out_type); \
    }

CONVERTQ_DOWN_IMPL(float16, qs8x16)
CONVERTQ_DOWN_IMPL(float16, qs16x16)

#define CONVERTQ_DOWN_SAT_IMPL(in_type, out_type)                                                                                        \
    inline out_type convert_##out_type##_##in_type##_sat(in_type a, int fixed_point_position)                                            \
    {                                                                                                                                    \
        return CONVERT_SAT(a * (1 << fixed_point_position) + select((in_type)-0.5f, (in_type)0.5f, isgreater(a, (in_type)0)), out_type); \
    }

CONVERTQ_DOWN_SAT_IMPL(float16, qs8x16)
CONVERTQ_DOWN_SAT_IMPL(float16, qs16x16)

#define CONVERTQ_UP_IMPL(in_type, out_type)                                             \
    inline out_type convert_##out_type##_##in_type(in_type a, int fixed_point_position) \
    {                                                                                   \
        return CONVERT(a, out_type) / (1 << fixed_point_position);                      \
    }

CONVERTQ_UP_IMPL(qs8x16, float16)
CONVERTQ_UP_IMPL(qs16x16, float16)

#define SQCVT_SAT_IMPL(type)                                                                    \
    inline type sqcvt_##type##_sat(float a, int fixed_point_position)                           \
    {                                                                                           \
        return CONVERT_SAT((a * (1 << fixed_point_position) + ((a < 0) ? -0.5f : 0.5f)), type); \
    }

SQCVT_SAT_IMPL(qs8)
SQCVT_SAT_IMPL(qs16)

#define SQCVT_SAT_OP_EXPAND_STR(a, type, position) sqcvt_##type##_sat((a), (position))
#define SQCVT_SAT_OP_EXPAND(a, type, position) SQCVT_SAT_OP_EXPAND_STR((a), type, position)

#endif // ARM_COMPUTE_FIXED_POINT_H