/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_FIXED_POINT_H #define ARM_COMPUTE_FIXED_POINT_H #define TYPE_ALIAS(type, alias) \ typedef type alias; \ typedef type alias##x##1; \ typedef type##2 alias##x##2; \ typedef type##3 alias##x##3; \ typedef type##4 alias##x##4; \ typedef type##8 alias##x##8; \ typedef type##16 alias##x##16; TYPE_ALIAS(char, qs8) TYPE_ALIAS(short, qs16) TYPE_ALIAS(int, qs32) #define qs8_MIN ((char)CHAR_MIN) #define qs8_MAX ((char)CHAR_MAX) #define qs16_MIN ((short)SHRT_MIN) #define qs16_MAX ((short)SHRT_MAX) #define qs32_MIN ((int)INT_MIN) #define qs32_MAX ((int)INT_MAX) #define qu8_MIN ((uchar)0) #define qu8_MAX ((uchar)UCHAR_MAX) #define qu16_MIN ((ushort)0) #define qu16_MAX ((ushort)USHRT_MAX) #define qu32_MIN ((uint)0) #define qu32_MAX ((uint)UINT_MAX) #define qs8_TYPE char #define qs8x1_TYPE char #define qs8x2_TYPE char2 #define qs8x3_TYPE char3 #define qs8x4_TYPE char4 #define qs8x8_TYPE char8 #define qs8x16_TYPE char16 #define qs16_TYPE short #define qs16x1_TYPE short #define qs16x2_TYPE short2 #define qs16x3_TYPE short3 #define qs16x4_TYPE short4 #define qs16x8_TYPE short8 #define qs16x16_TYPE short16 #define qs32_TYPE int #define qs32x1_TYPE int #define qs32x2_TYPE int2 #define qs32x3_TYPE int3 #define qs32x4_TYPE int4 #define qs32x8_TYPE int8 #define qs32x16_TYPE int16 /* All internal constants are represented in the maximum supported fixed point format (QS16), * thus we define an additional shift parameter required to convert the constant * from the maximum supported format to the require one. */ #define qs8_SHIFT 8 #define qs16_SHIFT 0 #undef VEC_DATA_TYPE_STR #undef VEC_DATA_TYPE #undef CONVERT_STR #undef CONVERT #undef CONVERT_SAT_STR #undef CONVERT_SAT #define VEC_DATA_TYPE_STR(type, size) type##x##size #define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size) #define CONVERT_STR3(x, type, rtype) (convert_##rtype((x))) #define CONVERT_STR2(x, type, rtype) CONVERT_STR3(x, type, rtype) #define CONVERT_STR(x, type) CONVERT_STR2(x, type, type##_TYPE) #define CONVERT(x, type) CONVERT_STR(x, type) #define CONVERT_SAT_STR3(x, type, rtype) (convert_##rtype##_sat((x))) #define CONVERT_SAT_STR2(x, type, rtype) CONVERT_SAT_STR3(x, type, rtype) #define CONVERT_SAT_STR(x, type) CONVERT_SAT_STR2(x, type, type##_TYPE) #define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type) /** Computes saturating absolute value of fixed point vector. * * @param[in] type the actual data type. * * @return The result of the fixed point absolute value. */ #define ABSQ_SAT_IMPL(type) \ inline type abs_##type##_sat(type VopA) \ { \ return CONVERT_SAT(abs(VopA), type); \ } ABSQ_SAT_IMPL(qs8x16) ABSQ_SAT_IMPL(qs16x8) #define ABS_SAT_OP_EXPAND_STR(a, type, size) abs_##type##x##size##_sat((a)) #define ABS_SAT_OP_EXPAND(a, type, size) ABS_SAT_OP_EXPAND_STR(a, type, size) /** Computes max of fixed point types. * * @param[in] type the actual data type. * * @return The result of the fixed point maximum. */ #define MAXQ_IMPL(type) \ inline type max_##type(type VopA, type VopB) \ { \ return max(VopA, VopB); \ } MAXQ_IMPL(qs8x1) MAXQ_IMPL(qs8x2) MAXQ_IMPL(qs8x4) MAXQ_IMPL(qs8x8) MAXQ_IMPL(qs8x16) MAXQ_IMPL(qs16x1) MAXQ_IMPL(qs16x2) MAXQ_IMPL(qs16x4) MAXQ_IMPL(qs16x8) MAXQ_IMPL(qs16x16) #define MAX_OP_EXPAND_STR(a, b, type, size) max_##type##x##size((a), (b)) #define MAX_OP_EXPAND(a, b, type, size) MAX_OP_EXPAND_STR(a, b, type, size) /** Computes saturated addition of fixed point types. * * @param[in] type the actual data type. * * @return The result of the fixed point addition. The result is saturated in case of overflow */ #define ADDQ_SAT_IMPL(type) \ inline type add_sat_##type(type VopA, type VopB) \ { \ return add_sat(VopA, VopB); \ } ADDQ_SAT_IMPL(qs8x1) ADDQ_SAT_IMPL(qs8x2) ADDQ_SAT_IMPL(qs8x4) ADDQ_SAT_IMPL(qs8x8) ADDQ_SAT_IMPL(qs8x16) ADDQ_SAT_IMPL(qs16x1) ADDQ_SAT_IMPL(qs16x2) ADDQ_SAT_IMPL(qs16x4) ADDQ_SAT_IMPL(qs16x8) ADDQ_SAT_IMPL(qs16x16) ADDQ_SAT_IMPL(qs32x1) ADDQ_SAT_IMPL(qs32x2) ADDQ_SAT_IMPL(qs32x4) ADDQ_SAT_IMPL(qs32x8) ADDQ_SAT_IMPL(qs32x16) #define ADD_SAT_OP_EXPAND_STR(a, b, type, size) add_sat_##type##x##size((a), (b)) #define ADD_SAT_OP_EXPAND(a, b, type, size) ADD_SAT_OP_EXPAND_STR(a, b, type, size) /** Computes saturated subtraction of fixed point types. * * @param[in] type the actual data type. * * @return The result of the fixed point subtraction. The result is saturated in case of overflow */ #define SUBQ_SAT_IMPL(type) \ inline type sub_sat_##type(type VopA, type VopB) \ { \ return sub_sat(VopA, VopB); \ } SUBQ_SAT_IMPL(qs8x1) SUBQ_SAT_IMPL(qs8x2) SUBQ_SAT_IMPL(qs8x4) SUBQ_SAT_IMPL(qs8x8) SUBQ_SAT_IMPL(qs8x16) SUBQ_SAT_IMPL(qs16x1) SUBQ_SAT_IMPL(qs16x2) SUBQ_SAT_IMPL(qs16x4) SUBQ_SAT_IMPL(qs16x8) SUBQ_SAT_IMPL(qs16x16) #define SUB_SAT_OP_EXPAND_STR(a, b, type, size) sub_sat_##type##x##size((a), (b)) #define SUB_SAT_OP_EXPAND(a, b, type, size) SUB_SAT_OP_EXPAND_STR(a, b, type, size) /* Multiply of two fixed point numbers * * @param[in] type the actual data type. * @param[in] itype the intermediate data type. * * @return The result of the fixed point multiplication. */ #define MULQ_IMPL(type, itype) \ inline type mul_##type(type VopA, type VopB, int fixed_point_position) \ { \ itype round_val = (itype)(1 << (fixed_point_position - 1)); \ itype res = CONVERT((VopA), itype) * CONVERT((VopB), itype) + round_val; \ return CONVERT((res >> (itype)fixed_point_position), type); \ } MULQ_IMPL(qs8x8, qs16x8) MULQ_IMPL(qs16x8, qs32x8) MULQ_IMPL(qs8x16, qs16x16) MULQ_IMPL(qs16x16, qs32x16) #define MUL_OP_EXPAND_STR(a, b, type, size, position) mul_##type##x##size((a), (b), (position)) #define MUL_OP_EXPAND(a, b, type, size, position) MUL_OP_EXPAND_STR(a, b, type, size, position) /* Saturate multiply of two fixed point numbers * * @param[in] type the actual data type. * @param[in] itype the intermediate data type. * * @return The result of the fixed point multiplication. The result is saturated in case of overflow */ #define MULQ_SAT_IMPL(type, itype) \ inline type mul_sat_##type(type VopA, type VopB, int fixed_point_position) \ { \ itype round_val = (itype)(1 << (fixed_point_position - 1)); \ itype res = mad_sat(CONVERT((VopA), itype), CONVERT((VopB), itype), round_val); \ return CONVERT_SAT((res >> (itype)fixed_point_position), type); \ } MULQ_SAT_IMPL(qs8x1, qs16x1) MULQ_SAT_IMPL(qs8x2, qs16x2) MULQ_SAT_IMPL(qs8x3, qs16x3) MULQ_SAT_IMPL(qs8x4, qs16x4) MULQ_SAT_IMPL(qs8x8, qs16x8) MULQ_SAT_IMPL(qs8x16, qs16x16) MULQ_SAT_IMPL(qs16x1, qs32x1) MULQ_SAT_IMPL(qs16x2, qs32x2) MULQ_SAT_IMPL(qs16x3, qs32x3) MULQ_SAT_IMPL(qs16x4, qs32x4) MULQ_SAT_IMPL(qs16x8, qs32x8) MULQ_SAT_IMPL(qs16x16, qs32x16) #define MUL_SAT_OP_EXPAND_STR(a, b, type, size, position) mul_sat_##type##x##size((a), (b), (position)) #define MUL_SAT_OP_EXPAND(a, b, type, size, position) MUL_SAT_OP_EXPAND_STR(a, b, type, size, position) /** Saturate multiply-accumulate * * @param[in] type the actual data type. * @param[in] itype the intermediate data type. * * @return The result of the fixed point multiply-accumulate. The result is saturated in case of overflow */ #define MLAQ_SAT_IMPL(type, itype) \ type mla_sat_##type(type VopA, type VopB, type VopC, int fixed_point_position) \ { \ itype res = mad_sat(CONVERT(VopB, itype), CONVERT(VopC, itype), (itype)(1 << (fixed_point_position - 1))); \ return add_sat(VopA, CONVERT_SAT(res >> (itype)fixed_point_position, type)); \ } MLAQ_SAT_IMPL(qs8x8, qs16x8) MLAQ_SAT_IMPL(qs8x16, qs16x16) MLAQ_SAT_IMPL(qs16x8, qs32x8) #define MLA_SAT_OP_EXPAND_STR(a, b, c, type, size, position) mla_sat_##type##x##size((a), (b), (c), (position)) #define MLA_SAT_OP_EXPAND(a, b, c, type, size, position) MLA_SAT_OP_EXPAND_STR(a, b, c, type, size, position) /** Saturate multiply-accumulate long * * @param[in] type the actual data type. * @param[in] itype the intermediate data type. * * @return The result of the fixed point multiply-accumulate long. The result is saturated in case of overflow */ #define MLALQ_SAT_IMPL(type, itype) \ itype mlal_sat_##type(itype VopA, type VopB, type VopC, int fixed_point_position) \ { \ itype res = mad_sat(CONVERT(VopB, itype), CONVERT(VopC, itype), (itype)(1 << (fixed_point_position - 1))); \ return add_sat(VopA, res >> (itype)fixed_point_position); \ } MLALQ_SAT_IMPL(qs8x8, qs16x8) MLALQ_SAT_IMPL(qs16x8, qs32x8) #define MLAL_SAT_OP_EXPAND_STR(a, b, c, type, size, position) mlal_sat_##type##x##size((a), (b), (c), (position)) #define MLAL_SAT_OP_EXPAND(a, b, c, type, size, position) MLAL_SAT_OP_EXPAND_STR(a, b, c, type, size, position) /** Saturate division of two fixed point vectors * * @param[in] stype the actual scalar data type. * @param[in] type the actual data type. * @param[in] itype the intermediate data type. * * @return The result of the fixed point division. The result is saturated in case of overflow */ #define DIVQ_SAT_IMPL(stype, type, itype) \ inline type div_sat_##type(type VopA, type VopB, int fixed_point_position) \ { \ itype conv_a = CONVERT((VopA), itype); \ itype denominator = CONVERT((VopB), itype); \ itype numerator = conv_a << (itype)(fixed_point_position); \ itype res = select((itype)(numerator / denominator), select((itype)stype##_MAX, (itype)stype##_MIN, (itype)(conv_a < (itype)0)), (itype)(denominator == (itype)0)); \ return CONVERT_SAT((res), type); \ } DIVQ_SAT_IMPL(qs8, qs8x16, qs16x16) DIVQ_SAT_IMPL(qs16, qs16x8, qs32x8) DIVQ_SAT_IMPL(qs16, qs16x16, qs32x16) DIVQ_SAT_IMPL(qs8, qs8, qs16) DIVQ_SAT_IMPL(qs16, qs16, qs32) #define DIV_SAT_OP_EXPAND_STR(a, b, type, position) div_sat_##type((a), (b), (position)) #define DIV_SAT_OP_EXPAND(a, b, type, position) DIV_SAT_OP_EXPAND_STR(a, b, type, position) #define DIV_SAT_OP_VEC_EXPAND_STR(a, b, type, size, position) div_sat_##type##x##size((a), (b), (position)) #define DIV_SAT_OP_VEC_EXPAND(a, b, type, size, position) DIV_SAT_OP_VEC_EXPAND_STR(a, b, type, size, position) /** Saturate exponential of a fixed point vector * * @note Implemented approach uses taylor polynomial to approximate the exponential function. * * @param[in] stype the actual scalar data type. * @param[in] type the actual data type. * @param[in] size the number of the calculated elements. * * @return The result of the fixed point exponential. The result is saturated in case of overflow */ #define EXPQ_IMPL(stype, type, size) \ inline type exp_sat_##type(type VopA, int fixed_point_position) \ { \ type const_one = (type)(1 << (fixed_point_position)); \ type ln2 = (type)((((0x58B9 >> (14 - fixed_point_position))) + 1) >> 1); \ type inv_ln2 = (type)((((0x38AA >> (14 - fixed_point_position)) + 1) >> 1)) | const_one; \ type A = (type)(((0x7FBA >> (14 - fixed_point_position)) + 1) >> 1); \ type B = (type)(((0x3FE9 >> (14 - fixed_point_position)) + 1) >> 1); \ type C = (type)(((0x1693 >> (14 - fixed_point_position)) + 1) >> 1); \ type D = (type)(((0x0592 >> (14 - fixed_point_position)) + 1) >> 1); \ type m = MUL_SAT_OP_EXPAND(VopA, inv_ln2, stype, size, fixed_point_position); \ type dec_m = m >> (type)fixed_point_position; \ type alpha = MUL_SAT_OP_EXPAND(dec_m << (type)fixed_point_position, ln2, stype, size, fixed_point_position); \ alpha = CONVERT(abs_diff(VopA, alpha), type); \ type sum = add_sat(MUL_SAT_OP_EXPAND(alpha, D, stype, size, fixed_point_position), C); \ sum = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), B); \ sum = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), A); \ sum = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), const_one); \ return select((type)stype##_MAX, select(sum << dec_m, sum >> -dec_m, dec_m < (type)0), clz(sum) > dec_m); /* Saturate result if needed */ \ } EXPQ_IMPL(qs8, qs8x2, 2) EXPQ_IMPL(qs8, qs8x4, 4) EXPQ_IMPL(qs8, qs8x8, 8) EXPQ_IMPL(qs8, qs8x16, 16) EXPQ_IMPL(qs16, qs16x2, 2) EXPQ_IMPL(qs16, qs16x4, 4) EXPQ_IMPL(qs16, qs16x8, 8) EXPQ_IMPL(qs16, qs16x16, 16) #define EXP_OP_EXPAND_STR(a, type, size, position) exp_sat_##type##x##size((a), (position)) #define EXP_OP_EXPAND(a, type, size, position) EXP_OP_EXPAND_STR(a, type, size, position) /** Saturate logarithm of a fixed point vector * * @note Implemented approach uses taylor polynomial to approximate the logarithm function. * * @param[in] stype the actual scalar data type. * @param[in] type the actual data type. * @param[in] size the number of the calculated elements. * * @return The result of the fixed point logarithm. The result is saturated in case of overflow */ #define LOGQ_IMPL(stype, type, size) \ inline type log_sat_##type(type VopA, int fixed_point_position) \ { \ type const_one = (type)(1 << (fixed_point_position)); \ type ln2 = (type)(0x58B9 >> (15 - fixed_point_position)); /* 1.4384189 */ \ type A = (type)(0x5C0F >> (14 - fixed_point_position)); /* 1.4384189 */ \ type B = -(type)(0x56AE >> (15 - fixed_point_position)); /* -0.6771900 */ \ type C = (type)(0x2933 >> (15 - fixed_point_position)); /* 0.3218538 */ \ type D = -(type)(0x0AA7 >> (15 - fixed_point_position)); /* -0.0832229 */ \ type inter_a = select(VopA, DIV_SAT_OP_VEC_EXPAND(const_one, VopA, stype, size, fixed_point_position), VopA < const_one); \ type shift_val = (type)(15 - stype##_SHIFT) - clz(inter_a >> (type)fixed_point_position); \ inter_a = inter_a >> shift_val; \ inter_a = sub_sat(inter_a, const_one); \ type sum = add_sat(MUL_SAT_OP_EXPAND(inter_a, D, stype, size, fixed_point_position), C); \ sum = add_sat(MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position), B); \ sum = add_sat(MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position), A); \ sum = MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position); \ sum = MUL_SAT_OP_EXPAND(add_sat(sum, shift_val << (type)fixed_point_position), ln2, stype, size, fixed_point_position); \ return select(select(sum, -sum, VopA < const_one), (type)0, VopA < (type)0); /* Saturate result if needed */ \ } LOGQ_IMPL(qs8, qs8x16, 16) LOGQ_IMPL(qs16, qs16x8, 8) LOGQ_IMPL(qs16, qs16x16, 16) #define LOG_OP_EXPAND_STR(a, type, size, position) log_sat_##type##x##size((a), (position)) #define LOG_OP_EXPAND(a, type, size, position) LOG_OP_EXPAND_STR(a, type, size, position) /** Saturate inverse square root of a fixed point vector * * @note Implemented approach uses Newton's method to approximate the inverse square root function. * * @param[in] stype the actual scalar data type. * @param[in] type the actual data type. * @param[in] size the number of the calculated elements. * * @return The result of the fixed point inverse square root. The result is saturated in case of overflow */ #define INVSQRTQ_IMPL(stype, type, size) \ inline type invsqrt_sat_##type(type VopA, int fixed_point_position) \ { \ type const_three = (type)(3 << (fixed_point_position)); \ type shift_value = (type)(16 - stype##_SHIFT) - (clz(VopA) + (type)fixed_point_position); \ type temp = select((type)(VopA >> shift_value), select((type)stype##_MAX, (type)(VopA << (-shift_value)), (type)(clz(VopA) > (-shift_value))), (type)(shift_value < (type)0)); \ type x = temp; \ x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \ x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \ x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \ if(sizeof((stype)(1)) > 1) /* Perform more iterations if datatype is QS16 */ \ { \ x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \ x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \ } \ type shift_value2 = select(shift_value >> 1, (-shift_value) >> 1, shift_value < (type)0); \ return select((type)(x >> shift_value2), select((type)stype##_MAX, (type)(x << shift_value2), (type)(clz(x) > shift_value2)), (type)(shift_value < (type)0)); /* Saturate result if needed */ \ } INVSQRTQ_IMPL(qs8, qs8x1, 1) INVSQRTQ_IMPL(qs16, qs16x1, 1) INVSQRTQ_IMPL(qs8, qs8x16, 16) INVSQRTQ_IMPL(qs16, qs16x8, 8) #define INVSQRT_OP_EXPAND_STR(a, type, size, position) invsqrt_sat_##type##x##size((a), (position)) #define INVSQRT_OP_EXPAND(a, type, size, position) INVSQRT_OP_EXPAND_STR(a, type, size, position) /** Saturate hyperbolic tangent of a fixed point vector * * tanh(x) = (e^2x - 1)/(e^2x + 1) * * @param[in] stype the actual scalar data type. * @param[in] type the actual data type. * @param[in] size the number of the calculated elements. * * @return The result of the fixed point hyperbolic tangent. The result is saturated in case of overflow */ #define TANHQ_IMPL(stype, type, size) \ inline type tanh_sat_##type(type VopA, int fixed_point_position) \ { \ type const_one = (type)(1 << (fixed_point_position)); \ type const_two = (type)(2 << (fixed_point_position)); \ type exp2x = EXP_OP_EXPAND(MUL_SAT_OP_EXPAND(const_two, VopA, stype, size, fixed_point_position), stype, size, fixed_point_position); \ type num = SUB_SAT_OP_EXPAND(exp2x, const_one, stype, size); \ type den = ADD_SAT_OP_EXPAND(exp2x, const_one, stype, size); \ return DIV_SAT_OP_VEC_EXPAND(num, den, stype, size, fixed_point_position); \ } TANHQ_IMPL(qs8, qs8x16, 16) TANHQ_IMPL(qs16, qs16x8, 8) #define TANH_OP_EXPAND_STR(a, type, size, position) tanh_sat_##type##x##size((a), (position)) #define TANH_OP_EXPAND(a, type, size, position) TANH_OP_EXPAND_STR(a, type, size, position) #define floatx16 float16 #define float16_TYPE float16 #define CONVERTQ_DOWN_IMPL(in_type, out_type) \ inline out_type convert_##out_type##_##in_type(in_type a, int fixed_point_position) \ { \ return CONVERT(a * (1 << fixed_point_position) + select((in_type)-0.5f, (in_type)0.5f, isgreater(a, (in_type)0)), out_type); \ } CONVERTQ_DOWN_IMPL(float16, qs8x16) CONVERTQ_DOWN_IMPL(float16, qs16x16) #define CONVERTQ_DOWN_SAT_IMPL(in_type, out_type) \ inline out_type convert_##out_type##_##in_type##_sat(in_type a, int fixed_point_position) \ { \ return CONVERT_SAT(a * (1 << fixed_point_position) + select((in_type)-0.5f, (in_type)0.5f, isgreater(a, (in_type)0)), out_type); \ } CONVERTQ_DOWN_SAT_IMPL(float16, qs8x16) CONVERTQ_DOWN_SAT_IMPL(float16, qs16x16) #define CONVERTQ_UP_IMPL(in_type, out_type) \ inline out_type convert_##out_type##_##in_type(in_type a, int fixed_point_position) \ { \ return CONVERT(a, out_type) / (1 << fixed_point_position); \ } CONVERTQ_UP_IMPL(qs8x16, float16) CONVERTQ_UP_IMPL(qs16x16, float16) #define SQCVT_SAT_IMPL(type) \ inline type sqcvt_##type##_sat(float a, int fixed_point_position) \ { \ return CONVERT_SAT((a * (1 << fixed_point_position) + ((a < 0) ? -0.5f : 0.5f)), type); \ } SQCVT_SAT_IMPL(qs8) SQCVT_SAT_IMPL(qs16) #define SQCVT_SAT_OP_EXPAND_STR(a, type, position) sqcvt_##type##_sat((a), (position)) #define SQCVT_SAT_OP_EXPAND(a, type, position) SQCVT_SAT_OP_EXPAND_STR((a), type, position) #endif // ARM_COMPUTE_FIXED_POINT_H