aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/NEAsymm.h
blob: 8558706c4d1d56b6fe1261f77447129a0af3ba2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_NEASYMM_H
#define ARM_COMPUTE_NEASYMM_H

#include "arm_compute/core/NEON/NEMath.h"
#include <arm_neon.h>

namespace arm_compute
{
using qasymm8x8_t   = uint8x8_t;   /**< 8 bit quantized asymmetric vector with 8 elements */
using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
using qasymm8x16_t  = uint8x16_t;  /**< 8 bit quantized asymmetric vector with 16 elements */

using qasymm8x8_signed_t   = int8x8_t;   /**< 8 bit quantized signed asymmetric vector with 8 elements */
using qasymm8x8x2_signed_t = int8x8x2_t; /**< 8 bit quantized signed asymmetric vector with 16 elements */
using qasymm8x8x3_signed_t = int8x8x3_t; /**< 8 bit quantized signed asymmetric vector with 24 elements */
using qasymm8x8x4_signed_t = int8x8x4_t; /**< 8 bit quantized signed asymmetric vector with 32 elements */
using qasymm8x16_signed_t  = int8x16_t;  /**< 8 bit quantized signed asymmetric vector with 16 elements */

/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
 *
 * vd*vs + vo
 *
 * @param[in] vd Input vector value in QASYMM8 format
 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
 *
 * @return A 16-component vector in QASYMM8 format, saturated to fit
 */
uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);

/** Perform a multiply-accumulate on all 16 components of a QASYMM8_SIGNED vector
 *
 * vd*vs + vo
 *
 * @param[in] vd Input vector value in QASYMM8_SIGNED format
 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
 *
 * @return A 16-component vector in QASYMM8_SIGNED format, saturated to fit
 */
int8x16_t vmlaq_qasymm8_signed(qasymm8x16_signed_t vd, float32x4_t vs, float32x4_t vo);

/** Performs final quantization step on 16 elements
 *
 * @param[in] in_s32                        Input to be quantized.
 * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
 * @param[in] result_shift                  Result shift parameter
 * @param[in] result_offset_after_shift_s32 Result offset parameter
 * @param[in] min_u8                        Relu lower bound
 * @param[in] max_u8                        Relu upper bound
 * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
 *
 * @return Quantized values
 */
inline uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
                                        int          result_fixedpoint_multiplier,
                                        int32_t      result_shift,
                                        int32x4_t    result_offset_after_shift_s32,
                                        uint8x16_t   min_u8,
                                        uint8x16_t   max_u8,
                                        bool         is_bounded_relu)
{
    const static int32x4_t zero_s32 = vdupq_n_s32(0);

    if(result_shift < 0)
    {
        in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
        in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
        in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
        in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));

        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
    }
    else
    {
        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);

        // Round to the nearest division by a power-of-two using result_shift_s32
        in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
        in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
        in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
        in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
    }

    // Add the offset terms
    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);

    // Saturate negative values
    in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
    in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
    in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
    in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);

    // Convert S32 to S16
    const int16x8x2_t in_s16 =
    {
        {
            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
        }
    };

    // Convert S16 to U8
    uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));

    if(is_bounded_relu)
    {
        out_u8 = vmaxq_u8(out_u8, min_u8);
        out_u8 = vminq_u8(out_u8, max_u8);
    }

    return out_u8;
}

/** Performs final quantization step on 16 elements
 *
 * @param[in] in_s32                        Input to be quantized.
 * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
 * @param[in] result_shift                  Result shift parameter
 * @param[in] result_offset_after_shift_s32 Result offset parameter
 * @param[in] min_s8                        Relu lower bound
 * @param[in] max_s8                        Relu upper bound
 * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
 *
 * @return Quantized values
 */
inline int8x16_t finalize_quantization(int32x4x4_t &in_s32,
                                       int          result_fixedpoint_multiplier,
                                       int32_t      result_shift,
                                       int32x4_t    result_offset_after_shift_s32,
                                       int8x16_t    min_s8,
                                       int8x16_t    max_s8,
                                       bool         is_bounded_relu)
{
    if(result_shift < 0)
    {
        in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
        in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
        in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
        in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));

        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
    }
    else
    {
        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);

        // Round to the nearest division by a power-of-two using result_shift_s32
        in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
        in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
        in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
        in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
    }

    // Add the offset terms
    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);

    // Convert S32 to S16
    const int16x8x2_t in_s16 =
    {
        {
            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
        }
    };

    // Convert S16 to S8
    int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));

    if(is_bounded_relu)
    {
        out_s8 = vmaxq_s8(out_s8, min_s8);
        out_s8 = vminq_s8(out_s8, max_s8);
    }

    return out_s8;
}

/** Performs final quantization step on 16 elements for symmetric quantization
 *
 * @param[in] in_s32                        Input to be quantized.
 * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
 * @param[in] result_shift                  Result shift parameter
 * @param[in] result_offset_after_shift_s32 Result offset parameter
 * @param[in] min_s8                        Relu lower bound
 * @param[in] max_s8                        Relu upper bound
 * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
 *
 * @return Quantized values
 */
inline int8x16_t finalize_quantization_symm(int32x4x4_t       &in_s32,
                                            const int32x4x4_t &result_fixedpoint_multiplier,
                                            const int32x4x4_t &result_shift,
                                            const int32x4_t   &result_offset_after_shift_s32,
                                            const int8x16_t   &min_s8,
                                            const int8x16_t   &max_s8,
                                            const bool         is_bounded_relu)
{
    const static int32x4_t one_s32 = vdupq_n_s32(1);

    // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
    int32x4x4_t res_shift_gt0 =
    {
        vqrdmulhq_s32(in_s32.val[0], result_fixedpoint_multiplier.val[0]),
        vqrdmulhq_s32(in_s32.val[1], result_fixedpoint_multiplier.val[1]),
        vqrdmulhq_s32(in_s32.val[2], result_fixedpoint_multiplier.val[2]),
        vqrdmulhq_s32(in_s32.val[3], result_fixedpoint_multiplier.val[3]),
    };
    // Round to the nearest division by a power-of-two using result_shift_s32
    res_shift_gt0.val[0] = rounding_divide_by_pow2(res_shift_gt0.val[0], result_shift.val[0]);
    res_shift_gt0.val[1] = rounding_divide_by_pow2(res_shift_gt0.val[1], result_shift.val[1]);
    res_shift_gt0.val[2] = rounding_divide_by_pow2(res_shift_gt0.val[2], result_shift.val[2]);
    res_shift_gt0.val[3] = rounding_divide_by_pow2(res_shift_gt0.val[3], result_shift.val[3]);

    int32x4x4_t res_shift_lt0 =
    {
        vmulq_s32(in_s32.val[0], vshlq_s32(one_s32, vnegq_s32(result_shift.val[0]))),
        vmulq_s32(in_s32.val[1], vshlq_s32(one_s32, vnegq_s32(result_shift.val[1]))),
        vmulq_s32(in_s32.val[2], vshlq_s32(one_s32, vnegq_s32(result_shift.val[2]))),
        vmulq_s32(in_s32.val[3], vshlq_s32(one_s32, vnegq_s32(result_shift.val[3]))),
    };
    res_shift_lt0.val[0] = vqrdmulhq_s32(res_shift_lt0.val[0], result_fixedpoint_multiplier.val[0]);
    res_shift_lt0.val[1] = vqrdmulhq_s32(res_shift_lt0.val[1], result_fixedpoint_multiplier.val[1]);
    res_shift_lt0.val[2] = vqrdmulhq_s32(res_shift_lt0.val[2], result_fixedpoint_multiplier.val[2]);
    res_shift_lt0.val[3] = vqrdmulhq_s32(res_shift_lt0.val[3], result_fixedpoint_multiplier.val[3]);

    // Select result depending on shift value
    const uint32x4x4_t mask_lt0 =
    {
#ifdef __aarch64__
        vcltzq_s32(result_shift.val[0]),
        vcltzq_s32(result_shift.val[1]),
        vcltzq_s32(result_shift.val[2]),
        vcltzq_s32(result_shift.val[3]),
#else  //__aarch64__
        vcltq_s32(result_shift.val[0], vdupq_n_s32(0)),
        vcltq_s32(result_shift.val[1], vdupq_n_s32(0)),
        vcltq_s32(result_shift.val[2], vdupq_n_s32(0)),
        vcltq_s32(result_shift.val[3], vdupq_n_s32(0)),
#endif //__aarch64__
    };

    in_s32.val[0] = vbslq_s32(mask_lt0.val[0], res_shift_lt0.val[0], res_shift_gt0.val[0]);
    in_s32.val[1] = vbslq_s32(mask_lt0.val[1], res_shift_lt0.val[1], res_shift_gt0.val[1]);
    in_s32.val[2] = vbslq_s32(mask_lt0.val[2], res_shift_lt0.val[2], res_shift_gt0.val[2]);
    in_s32.val[3] = vbslq_s32(mask_lt0.val[3], res_shift_lt0.val[3], res_shift_gt0.val[3]);

    // Add the offset terms
    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);

    // Convert S32 to S16
    const int16x8x2_t in_s16 =
    {
        {
            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
        }
    };

    // Convert S16 to S8
    int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));

    if(is_bounded_relu)
    {
        out_s8 = vmaxq_s8(out_s8, min_s8);
        out_s8 = vminq_s8(out_s8, max_s8);
    }

    return out_s8;
}

/** Performs final quantization step on single element
 *
 * @param[in] in_value                      Input to be quantized.
 * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
 * @param[in] result_shift                  Result shift parameter
 * @param[in] result_offset_after_shift_s32 Result offset parameter
 * @param[in] min_u8                        Relu lower bound
 * @param[in] max_u8                        Relu upper bound
 * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
 *
 * @return Quantized value
 */
inline uint8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
                                     int32_t result_shift, int32_t result_offset_after_shift_s32,
                                     uint8_t min_u8, uint8_t max_u8, bool is_bounded_relu)
{
    int32x4_t in_s32 = vdupq_n_s32(in_value);

    if(result_shift < 0)
    {
        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
    }
    else
    {
        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
        // Shift value by result_shift_s32
        in_value = rounding_divide_by_pow2(in_value, result_shift);
    }

    // Add the offset term
    in_value += result_offset_after_shift_s32;

    // Bound the result
    uint8_t out_u8 = static_cast<uint8_t>(std::max<int32_t>(0, std::min<int32_t>(255, in_value)));
    if(is_bounded_relu)
    {
        out_u8 = static_cast<uint8_t>(std::max(min_u8, std::min(max_u8, out_u8)));
    }

    return out_u8;
}

/** Performs final quantization step on single element
 *
 * @param[in] in_value                      Input to be quantized.
 * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
 * @param[in] result_shift                  Result shift parameter
 * @param[in] result_offset_after_shift_s32 Result offset parameter
 * @param[in] min_s8                        Relu lower bound
 * @param[in] max_s8                        Relu upper bound
 * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
 *
 * @return Quantized value
 */
inline int8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
                                    int32_t result_shift, int32_t result_offset_after_shift_s32,
                                    int8_t min_s8, int8_t max_s8, bool is_bounded_relu)
{
    int32x4_t in_s32 = vdupq_n_s32(in_value);

    if(result_shift < 0)
    {
        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
    }
    else
    {
        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);

        // Shift value by result_shift_s32
        in_value = rounding_divide_by_pow2(in_value, result_shift);
    }

    // Add the offset term
    in_value += result_offset_after_shift_s32;

    // Bound the result
    int8_t out_s8 = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
    if(is_bounded_relu)
    {
        out_s8 = static_cast<int8_t>(std::max(min_s8, std::min(max_s8, out_s8)));
    }

    return out_s8;
}

/** Dequantize a neon vector holding 8 quantized values.
 *
 * @param[in] qv Input values to be dequantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x2_t vdequantize(const uint8x8_t &qv, const UniformQuantizationInfo &qi)
{
    const float         scale   = qi.scale;
    const int           offset  = qi.offset;
    const int32x4_t     voffset = vdupq_n_s32(offset);
    const float32x4_t   vscale  = vdupq_n_f32(scale);
    const float32x4x2_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(qv)))), voffset)), vscale),
        }
    };
    return vdequantized_input;
}

/** Dequantize a neon vector holding 8 singed quantized values.
 *
 * @param[in] qv Input values to be dequantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x2_t vdequantize(const int8x8_t &qv, const UniformQuantizationInfo &qi)
{
    const float         scale   = qi.scale;
    const int           offset  = qi.offset;
    const int32x4_t     voffset = vdupq_n_s32(offset);
    const float32x4_t   vscale  = vdupq_n_f32(scale);
    const float32x4x2_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(qv))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(qv))), voffset)), vscale),
        }
    };
    return vdequantized_input;
}

/** Dequantize a neon vector holding 16 quantized values.
 *
 * @param[in] qv Input values to be dequantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const uint8x16_t &qv, const UniformQuantizationInfo &qi)
{
    const float         scale   = qi.scale;
    const int           offset  = qi.offset;
    const int32x4_t     voffset = vdupq_n_s32(offset);
    const float32x4_t   vscale  = vdupq_n_f32(scale);
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
        }
    };
    return vdequantized_input;
}

/** Dequantize a neon vector holding 16 signed quantized values.
 *
 * @param[in] qv Input values to be dequantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const int8x16_t &qv, const UniformQuantizationInfo &qi)
{
    const float         scale   = qi.scale;
    const int           offset  = qi.offset;
    const int32x4_t     voffset = vdupq_n_s32(offset);
    const float32x4_t   vscale  = vdupq_n_f32(scale);
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
        }
    };
    return vdequantized_input;
}

/** Dequantize following an asymmetric quantization scheme a neon vector holding 16 quantized values.
 *
 * @param[in] qv     Input values to be dequantized.
 * @param[in] scale  Quantization scaling factor.
 * @param[in] offset Zero quantization offset.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const uint8x16_t &qv, float scale, int32_t offset)
{
    const int32x4_t     voffset = vdupq_n_s32(offset);
    const float32x4_t   vscale  = vdupq_n_f32(scale);
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
        }
    };
    return vdequantized_input;
}

/** Dequantize a vector of 16 values stored as signed asymmetric.
 *
 * @param[in] qv     Input values to be dequantized.
 * @param[in] scale  Quantization scaling factor.
 * @param[in] offset Zero quantization offset.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale, int32_t offset)
{
    const int32x4_t     voffset = vdupq_n_s32(offset);
    const float32x4_t   vscale  = vdupq_n_f32(scale);
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
        }
    };
    return vdequantized_input;
}

/** Dequantize following symmetric quantization scheme a neon vector holding 16 quantized values.
 *
 * @param[in] qv     Input values to be dequantized.
 * @param[in] vscale Vector containing quantization scaling factors.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const int8x16_t &qv, const float32x4x4_t vscale)
{
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[0]),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[1]),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[2]),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[3]),
        }
    };
    return vdequantized_input;
}

/** Dequantize following a symmetric quantization scheme a neon vector holding 16 quantized values.
 *
 * @param[in] qv    Input values to be dequantized.
 * @param[in] scale Quantization scaling factor.
 *
 * @return Dequantized values in a neon vector
 */
inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale)
{
    const float32x4_t   vscale = vdupq_n_f32(scale);
    const float32x4x4_t vdequantized_input =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
        }
    };
    return vdequantized_input;
}

/** Quantize a neon vector holding 8 floating point values.
 *
 * @param[in] qv Input values to be quantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return A neon vector holding the quantized values
 */
inline uint8x8_t vquantize(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
{
    const float       scale     = qi.scale;
    const int         offset    = qi.offset;
    const float32x4_t voffset   = vdupq_n_f32(offset);
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
    const int32x4x4_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
#else  //__aarch64__
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
#endif //__aarch64__
        }
    };
    return vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
}

/** Quantize a neon vector holding 8 floating point values.
 *
 * @param[in] qv Input values to be quantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return A neon vector holding the singed quantized values
 */
inline int8x8_t vquantize_signed(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
{
    const float       scale     = qi.scale;
    const int         offset    = qi.offset;
    const float32x4_t voffset   = vdupq_n_f32(offset);
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
    const int32x4x4_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
#else  //__aarch64__
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
#endif //__aarch64__
        }
    };
    return vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
}

/** Quantize a neon vector holding 16 floating point values.
 *
 * @param[in] qv Input values to be quantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return A neon vector holding the quantized values
 */
inline uint8x16_t vquantize(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
    const float       scale     = qi.scale;
    const int         offset    = qi.offset;
    const float32x4_t voffset   = vdupq_n_f32(offset);
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
    const int32x4x4_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
#else  //__aarch64__
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
#endif //__aarch64__
        }
    };
    const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
    const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
    return vcombine_u8(pa, pb);
}

/** Signed quantize a neon vector holding 16 floating point values.
 *
 * @param[in] qv Input values to be quantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return A neon vector holding the quantized values
 */
inline int8x16_t vquantize_signed(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
    const float       scale     = qi.scale;
    const int         offset    = qi.offset;
    const float32x4_t voffset   = vdupq_n_f32(offset);
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
    const int32x4x4_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
#else  //__aarch64__
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
#endif //__aarch64__
        }
    };
    const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
    const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
    return vcombine_s8(pa, pb);
}

/** Quantize to QASYMM16 a neon vector holding 16 floating point values.
 *
 * @param[in] qv Input values to be quantized.
 * @param[in] qi Quantization information to be used in the computation.
 *
 * @return A neon vector holding the quantized values
 */
inline uint16x8x2_t vquantize_qasymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
    const float       scale     = qi.scale;
    const int         offset    = qi.offset;
    const float32x4_t voffset   = vdupq_n_f32(offset);
    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
    const int32x4x4_t rf =
    {
        {
#ifdef __aarch64__
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
#else  //__aarch64__
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
#endif //__aarch64__
        }
    };
    const uint16x8_t pa = vcombine_u16(vqmovun_s32(rf.val[0]), vqmovun_s32(rf.val[1]));
    const uint16x8_t pb = vcombine_u16(vqmovun_s32(rf.val[2]), vqmovun_s32(rf.val[3]));
    return { pa, pb };
}
} // namespace arm_compute
#include "arm_compute/core/NEON/NEAsymm.inl"
#endif // ARM_COMPUTE_NEASYMM_H