aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon/nchw/all.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/pool2d/neon/nchw/all.cpp')
-rw-r--r--src/cpu/kernels/pool2d/neon/nchw/all.cpp462
1 files changed, 462 insertions, 0 deletions
diff --git a/src/cpu/kernels/pool2d/neon/nchw/all.cpp b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
new file mode 100644
index 0000000000..0602bea667
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
@@ -0,0 +1,462 @@
+/*
+ * Copyright (c) 2021-2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/impl.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+#include <limits>
+
+#ifdef ENABLE_NCHW_KERNELS
+namespace arm_compute
+{
+namespace cpu
+{
+#define READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ (x == width + pad_left - 1) ? vset_lane_f32(*(ptr), vdup_n_f32(fval), 0) : vld1_f32(ptr)
+#define READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1) \
+ : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) \
+ ? vdup_n_f32(fval) \
+ : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+
+#define READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ vcombine_f32(READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval), \
+ READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 2), y, (ptr + 2), fval))
+
+float32x4x2_t
+read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
+{
+ float32x4x2_t vec;
+ vec.val[0] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval);
+ vec.val[1] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 4), y, (ptr + 4), fval);
+ return vec;
+}
+
+void poolingMxN_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ float res = 0.0f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data *= data;
+ }
+
+ res += data;
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+ }
+ else // if max pooling
+ {
+ res = min_value;
+
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ res = std::max(res, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = res;
+ },
+ in, out);
+}
+
+void pooling2_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ if (pool_info.pool_type == PoolingType::MAX && dst1)
+ {
+ pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
+ }
+ else
+ {
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+ constexpr int pool_size = 2;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ auto top_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ in_top_ptr, fill_value);
+ auto bottom_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ in_bottom_ptr, fill_value);
+ float32x2_t res = {};
+ float final_res = 0;
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f32(top_data, top_data);
+ bottom_data = vmul_f32(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Perform pooling
+ const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
+ res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+ }
+ else
+ {
+ const float32x2_t max_data = vmax_f32(top_data, bottom_data);
+ res = vpmax_f32(max_data, max_data);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+ }
+}
+
+void pooling3_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ constexpr const int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_middle_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+ const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+ auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr,
+ fill_value);
+ auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ in_middle_ptr, fill_value);
+ auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2,
+ in_bottom_ptr, fill_value);
+
+ float32x2_t res = {};
+ float final_res = 0;
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmulq_f32(top_data, top_data);
+ middle_data = vmulq_f32(middle_data, middle_data);
+ bottom_data = vmulq_f32(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Perform pooling
+ const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
+ res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
+ res = vmul_f32(vpadd_f32(res, res), scale_v);
+ }
+ else
+ {
+ const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
+ res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
+ res = vpmax_f32(res, res);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+}
+
+void pooling7_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ constexpr const int pool_size = 7;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ std::array<const uint8_t *, pool_size> src_ptrs{{}};
+ for (int i = 0; i < pool_size; ++i)
+ {
+ src_ptrs[i] =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
+ }
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
+
+ auto x_val = id.x() * pool_stride_x;
+ auto y_val = id.y() * pool_stride_y;
+ float32x4x2_t data =
+ read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
+
+ float32x2_t res = {};
+ float final_res = 0.f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+ data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+ }
+ float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
+ for (int i = 1; i < pool_size; ++i)
+ {
+ in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+
+ x_val = id.x() * pool_stride_x;
+ y_val = (id.y() * pool_stride_y) + i;
+ data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr,
+ fill_value);
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+ data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+ }
+ sum_data = vaddq_f32(sum_data, data.val[0]);
+ sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+ }
+ res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
+ res = vmul_f32(vpadd_f32(res, res), scale_v);
+ }
+ else
+ {
+ for (int i = 1; i < pool_size; ++i)
+ {
+ in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+
+ x_val = id.x() * pool_stride_x;
+ y_val = (id.y() * pool_stride_y) + i;
+ float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val,
+ in_ptr, fill_value);
+ data = vmax2q_f32(data, temp);
+ }
+ res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
+ res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
+ res = vpmax_f32(res, res);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+}
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // ENABLE_NCHW_KERNELS