aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/pool2d/neon')
-rw-r--r--src/cpu/kernels/pool2d/neon/fp16.cpp659
-rw-r--r--src/cpu/kernels/pool2d/neon/fp32.cpp481
-rw-r--r--src/cpu/kernels/pool2d/neon/impl.h138
-rw-r--r--src/cpu/kernels/pool2d/neon/list.h113
-rw-r--r--src/cpu/kernels/pool2d/neon/nchw/all.cpp462
-rw-r--r--src/cpu/kernels/pool2d/neon/qasymm8.cpp47
-rw-r--r--src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp47
-rw-r--r--src/cpu/kernels/pool2d/neon/quantized.h832
8 files changed, 2779 insertions, 0 deletions
diff --git a/src/cpu/kernels/pool2d/neon/fp16.cpp b/src/cpu/kernels/pool2d/neon/fp16.cpp
new file mode 100644
index 0000000000..9d24d79afb
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/fp16.cpp
@@ -0,0 +1,659 @@
+/*
+ * Copyright (c) 2021-2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/impl.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
+
+namespace arm_compute
+{
+namespace cpu
+{
+#ifdef ENABLE_NCHW_KERNELS
+
+namespace
+{
+float16x4_t
+read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
+{
+ float16_t vec[4];
+ const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
+ for (int i = 0; i < 4; i++)
+ {
+ if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+ {
+ vec[i] = *(ptr + i);
+ }
+ else
+ {
+ vec[i] = fval;
+ }
+ }
+ return wrapper::vload(vec);
+}
+} // namespace
+
+void pooling3_fp16_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ constexpr const int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
+ const unsigned char *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const unsigned char *const src_middle_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const unsigned char *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+ float16x4_t top_data =
+ read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
+ float16x4_t middle_data = read_4_boundary_aware_fp16(
+ src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
+ float16x4_t bottom_data = read_4_boundary_aware_fp16(
+ src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_2,
+ reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
+ float16x4_t res = {};
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f16(top_data, top_data);
+ middle_data = vmul_f16(middle_data, middle_data);
+ bottom_data = vmul_f16(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h,
+ pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ const float16x4_t scale_v = vdup_n_f16(scale);
+ // Perform pooling
+ const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
+ res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
+ res = vmul_f16(vpadd_f16(res, res), scale_v);
+ }
+ else
+ {
+ const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
+ res = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
+ res = vpmax_f16(res, res);
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = vsqrt_f16(res);
+ }
+
+ *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
+ },
+ in, out);
+}
+#endif // ENABLE_NCHW_KERNELS
+
+void pooling2_f16_maxpool_indices(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 8;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window_out);
+ Iterator indices(dst1, window_out);
+
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+
+ const int pad_right = src->info()->padding().right;
+ const int pad_left = src->info()->padding().left;
+ const int pad_horizontal = pad_right + pad_left;
+ const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
+ const int in_stride_z = static_cast<int>(src->info()->strides_in_bytes().z());
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = id.y() * pool_stride_x;
+ const int idx_height = id.z() * pool_stride_y;
+ const int pool_limit_y = pool_pad_top - idx_height;
+ const int pool_limit_x = pool_pad_left - idx_width;
+
+ const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+ const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+ const int in_x0_offset =
+ (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+ const int in_x1_offset =
+ (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+ const int in_x2_offset =
+ (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+ const int in_x3_offset =
+ (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+
+ int x_off = window_start_x;
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ const auto in_x0_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off;
+ const auto in_x1_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off;
+ const auto in_x2_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off;
+ const auto in_x3_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off;
+ const auto v_x0 = vld1q_f16(in_x0_ptr);
+ const auto v_x1 = vld1q_f16(in_x1_ptr);
+ const auto v_x2 = vld1q_f16(in_x2_ptr);
+ const auto v_x3 = vld1q_f16(in_x3_ptr);
+ float16x8_t vres = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
+ // Store result
+ vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
+
+ const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x,
+ pool_stride_y, DataLayout::NHWC);
+ const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off;
+ const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+ const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) -
+ pad_horizontal * src->info()->tensor_shape()[1];
+ const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+ const uint32x4_t voffset_x0_0 = {offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3};
+ const uint32x4_t voffset_x0_1 = {offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7};
+ const uint16x8_t voffset_x0 = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
+ const uint32x4_t voffset_x1_0 = {offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3};
+ const uint32x4_t voffset_x1_1 = {offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7};
+ const uint16x8_t voffset_x1 = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
+ const uint32x4_t voffset_x2_0 = {offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3};
+ const uint32x4_t voffset_x2_1 = {offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7};
+ const uint16x8_t voffset_x2 = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
+ const uint32x4_t voffset_x3_0 = {offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3};
+ const uint32x4_t voffset_x3_1 = {offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7};
+ const uint16x8_t voffset_x3 = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
+ const uint16x8_t tmp_indices0 = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
+ const uint16x8_t tmp_indices1 = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
+ const uint16x8_t tmp_indices2 =
+ vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
+ const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
+ const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
+ // Store indicies
+ vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
+ vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ const auto x0 = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off);
+ const auto x1 = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off);
+ const auto x2 = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off);
+ const auto x3 = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off);
+ float16_t res = std::max(std::max(x2, x3), std::max(x0, x1));
+
+ // Store result
+ *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
+
+ const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x,
+ pool_stride_y, DataLayout::NHWC);
+ const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off;
+ const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+ const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) -
+ pad_horizontal * src->info()->tensor_shape()[1];
+ const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
+ const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
+ const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
+ const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+
+ // Store indices
+ *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
+ }
+ },
+ in, out, indices);
+}
+#ifdef ENABLE_NCHW_KERNELS
+
+void pooling2_fp16_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ if (pool_info.pool_type == PoolingType::MAX && dst1)
+ {
+ pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
+ }
+ else
+ {
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+ constexpr int pool_size = 2;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x, pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
+
+ const unsigned char *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const unsigned char *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto in_top_ptr = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
+ y_val_0, in_top_ptr, fill_value);
+ float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
+ y_val_1, in_bottom_ptr, fill_value);
+ float16x4_t res = {};
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f16(top_data, top_data);
+ bottom_data = vmul_f16(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ const float16x4_t scale_v = vdup_n_f16(scale);
+
+ const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
+ res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
+ }
+ else
+ {
+ const float16x4_t max_data = vmax_f16(top_data, bottom_data);
+ res = vpmax_f16(max_data, max_data);
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = vsqrt_f16(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
+ },
+ in, out);
+ }
+}
+
+void poolingMxN_fp16_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ float16_t res = 0.0f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float16_t scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float16_t *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data *= data;
+ }
+
+ res += data;
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+ }
+ else // if max pooling
+ {
+ res = fp16_min;
+
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float16_t *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ res = std::max(res, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float16_t *>(out.ptr())) = res;
+ },
+ in, out);
+}
+#endif // ENABLE_NCHW_KERNELS
+
+void poolingMxN_fp16_neon_nhwc(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ if (pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && dst1)
+ {
+ pooling2_f16_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
+ }
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 8;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window_out);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t min_value = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ float16x8_t vres;
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = id.y() * pool_stride_x;
+ const int idx_height = id.z() * pool_stride_y;
+ const int pool_limit_y = pool_pad_top - idx_height;
+ const int pool_limit_x = pool_pad_left - idx_width;
+
+ const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+ const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+ const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+ const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+ int x_off = window_start_x;
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ const float16x8_t scale_v = vdupq_n_f16(scale);
+
+ // Perform pooling
+ vres = vdupq_n_f16(0.0f);
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float16x8_t data = vld1q_f16(
+ reinterpret_cast<const float16_t *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+
+ // Get power of 2 in case of l2 pooling and accumulate
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ vres = vaddq_f16(vres, vmulq_f16(data, data));
+ }
+ else
+ {
+ vres = vaddq_f16(vres, data);
+ }
+ }
+ }
+ // Divide by scale
+ vres = vmulq_f16(vres, scale_v);
+ }
+ else
+ {
+ vres = vdupq_n_f16(min_value);
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float16x8_t data = vld1q_f16(
+ reinterpret_cast<const float16_t *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ vres = vmaxq_f16(vres, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
+ vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal),
+ sqrt_reciprocal));
+ }
+
+ // Store result
+ vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ float16_t res = 0.0f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float16_t scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float data =
+ *(reinterpret_cast<const float16_t *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+
+ // Get power of 2 in case of l2 pooling and accumulate
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res += data * data;
+ }
+ else
+ {
+ res += data;
+ }
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+ }
+ else
+ {
+ res = min_value;
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float16_t data =
+ *(reinterpret_cast<const float16_t *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ res = std::max(res, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
+ }
+ },
+ in, out);
+}
+} // namespace cpu
+} // namespace arm_compute
+
+#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */
diff --git a/src/cpu/kernels/pool2d/neon/fp32.cpp b/src/cpu/kernels/pool2d/neon/fp32.cpp
new file mode 100644
index 0000000000..aaa37863cb
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/fp32.cpp
@@ -0,0 +1,481 @@
+/*
+ * Copyright (c) 2021-2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace
+{
+void pooling2_f32_maxpool_indices(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 4;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window_out);
+ Iterator indices(dst1, window_out);
+
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+
+ float32x4_t vres;
+ float res;
+
+ const int pad_right = src->info()->padding().right;
+ const int pad_left = src->info()->padding().left;
+ const int pad_horizontal = pad_right + pad_left;
+ const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
+ const int in_stride_z = static_cast<int>(src->info()->strides_in_bytes().z());
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = id.y() * pool_stride_x;
+ const int idx_height = id.z() * pool_stride_y;
+ const int pool_limit_y = pool_pad_top - idx_height;
+ const int pool_limit_x = pool_pad_left - idx_width;
+
+ const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+ const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+
+ const int in_x0_offset =
+ (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+ const int in_x1_offset =
+ (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+ const int in_x2_offset =
+ (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+ const int in_x3_offset =
+ (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
+
+ int x_off = window_start_x;
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ const auto in_x0_ptr = reinterpret_cast<const float *>(in.ptr() + in_x0_offset);
+ const auto in_x1_ptr = reinterpret_cast<const float *>(in.ptr() + in_x1_offset);
+ const auto in_x2_ptr = reinterpret_cast<const float *>(in.ptr() + in_x2_offset);
+ const auto in_x3_ptr = reinterpret_cast<const float *>(in.ptr() + in_x3_offset);
+ const auto v_x0 = vld1q_f32(in_x0_ptr + x_off);
+ const auto v_x1 = vld1q_f32(in_x1_ptr + x_off);
+ const auto v_x2 = vld1q_f32(in_x2_ptr + x_off);
+ const auto v_x3 = vld1q_f32(in_x3_ptr + x_off);
+ vres = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
+ // Store result
+ vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
+
+ const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x,
+ pool_stride_y, DataLayout::NHWC);
+ const uint32_t offset_x0 = offset_base / sizeof(float) + x_off;
+ const uint32_t offset_x1 = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
+ const uint32_t offset_x2 =
+ offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
+ const uint32_t offset_x3 = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
+ const uint32x4_t voffset_x0 = {offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3};
+ const uint32x4_t voffset_x1 = {offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3};
+ const uint32x4_t voffset_x2 = {offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3};
+ const uint32x4_t voffset_x3 = {offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3};
+ const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
+ const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
+ const uint32x4_t tmp_indices2 =
+ vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
+
+ // Store indices
+ vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ const auto x0 = *(reinterpret_cast<const float *>(in.ptr() + in_x0_offset) + x_off);
+ const auto x1 = *(reinterpret_cast<const float *>(in.ptr() + in_x1_offset) + x_off);
+ const auto x2 = *(reinterpret_cast<const float *>(in.ptr() + in_x2_offset) + x_off);
+ const auto x3 = *(reinterpret_cast<const float *>(in.ptr() + in_x3_offset) + x_off);
+ res = std::max(std::max(x2, x3), std::max(x0, x1));
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
+
+ const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x,
+ pool_stride_y, DataLayout::NHWC);
+ const uint32_t offset_x0 = offset_base / sizeof(float) + x_off;
+ const uint32_t offset_x1 = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
+ const uint32_t offset_x2 =
+ offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
+ const uint32_t offset_x3 = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
+ const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
+ const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
+ const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
+
+ // Store indices
+ *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
+ }
+ },
+ in, out, indices);
+}
+} // namespace
+
+void poolingMxN_fp32_neon_nhwc_kernel_indices(
+ const ITensor *src, ITensor *dst0, ITensor *dst1, const PoolingLayerInfo &pool_info, const Window &window)
+{
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ constexpr int window_step_x = 4;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator out(dst0, window_out);
+ Iterator indices(dst1, window_out);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+
+ float32x4_t vres;
+ uint32x4_t vidx;
+
+ constexpr int idx_width = 1;
+ constexpr int idx_height = 2;
+ constexpr int idx_batch = 3;
+
+ const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
+ const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
+ const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[idx_batch]);
+
+ const int input_dim_w = src->info()->dimension(idx_width);
+ const int input_dim_h = src->info()->dimension(idx_height);
+
+ const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
+ const int idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
+
+ const int pool_start_x = std::max(0, -idx_width);
+ const int pool_start_y = std::max(0, -idx_height);
+
+ const int pool_end_x = std::min(pool_size_x, input_dim_w - idx_width);
+ const int pool_end_y = std::min(pool_size_y, input_dim_h - idx_height);
+
+ const uint8_t *in_ptr_n = in_ptr_start + id[idx_batch] * n_stride;
+
+ const int in_ptr_y_offset = (z_stride * idx_height) + (pool_start_y * z_stride);
+ const int in_ptr_x_offset = (y_stride * idx_width) + (pool_start_x * y_stride);
+
+ int x_off = window_start_x;
+
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ vres = vdupq_n_f32(min_value);
+ vidx = vdupq_n_u32(0U);
+ const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
+ uint32_t curr_kernel_index = pool_size_x * pool_start_y;
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
+ curr_kernel_index += pool_start_x;
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in_ptr_x));
+ const uint32x4_t vidx_curr = vdupq_n_u32(curr_kernel_index);
+ const uint32x4_t idxMask = vcgtq_f32(data, vres);
+ vidx = vbslq_u32(idxMask, vidx_curr, vidx);
+ vres = vmaxq_f32(vres, data);
+ in_ptr_x += y_stride;
+ curr_kernel_index++;
+ }
+ curr_kernel_index += (pool_size_x - pool_end_x);
+ in_ptr_y += z_stride;
+ }
+ // Store result
+ vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
+ vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, vidx);
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ float res = min_value;
+ uint32_t idx = 0U;
+ const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float data = *(reinterpret_cast<const float *>(in_ptr_x));
+ if (data > res)
+ {
+ idx = pool_size_x * y + x;
+ res = data;
+ }
+ in_ptr_x += y_stride;
+ }
+ in_ptr_y += z_stride;
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
+ *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = idx;
+ }
+ },
+ out, indices);
+}
+
+void poolingMxN_fp32_neon_nhwc(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ if ((pool_info.pool_type == PoolingType::MAX) && pool_info.use_kernel_indices && (dst1 != nullptr))
+ {
+ poolingMxN_fp32_neon_nhwc_kernel_indices(src, dst0, dst1, pool_info, window);
+ }
+ else if (pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX &&
+ !pool_info.pad_stride_info.has_padding() && (dst1 != nullptr))
+ {
+ pooling2_f32_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
+ }
+ else
+ {
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 4;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window_out);
+
+ const int pool_size_x =
+ pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y =
+ pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ float32x4_t vres;
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = id.y() * pool_stride_x;
+ const int idx_height = id.z() * pool_stride_y;
+ const int pool_limit_y = pool_pad_top - idx_height;
+ const int pool_limit_x = pool_pad_left - idx_width;
+
+ const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+ const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+ const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+ const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+ int x_off = window_start_x;
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x4_t scale_v = vdupq_n_f32(scale);
+
+ // Perform pooling
+ vres = vdupq_n_f32(0.0f);
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float32x4_t data = vld1q_f32(
+ reinterpret_cast<const float *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+
+ // Get power of 2 in case of l2 pooling and accumulate
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ vres = vmlaq_f32(vres, data, data);
+ }
+ else
+ {
+ vres = vaddq_f32(vres, data);
+ }
+ }
+ }
+ // Divide by scale
+ vres = vmulq_f32(vres, scale_v);
+ }
+ else
+ {
+ vres = vdupq_n_f32(min_value);
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float32x4_t data = vld1q_f32(
+ reinterpret_cast<const float *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ vres = vmaxq_f32(vres, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ float32x4_t l2_res = {static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
+ static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
+ static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
+ static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))};
+ vres = l2_res;
+ }
+
+ // Store result
+ vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ float res = 0.0f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float data =
+ *(reinterpret_cast<const float *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+
+ // Get power of 2 in case of l2 pooling and accumulate
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res += data * data;
+ }
+ else
+ {
+ res += data;
+ }
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+ }
+ else
+ {
+ res = min_value;
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const float data =
+ *(reinterpret_cast<const float *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ res = std::max(res, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
+ }
+ },
+ in, out);
+ }
+}
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/cpu/kernels/pool2d/neon/impl.h b/src/cpu/kernels/pool2d/neon/impl.h
new file mode 100644
index 0000000000..008cf651e1
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/impl.h
@@ -0,0 +1,138 @@
+/*
+ * Copyright (c) 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#ifndef ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H
+#define ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+#include <limits>
+
+#ifdef ENABLE_NCHW_KERNELS
+namespace arm_compute
+{
+namespace cpu
+{
+
+namespace
+{
+template <typename T>
+auto read_2_boundary_aware_as_f32(int srcw, int srch, int pad_l, int pad_t, int x, int y, const T *ptr, T fval)
+{
+ T vec[2];
+ const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
+ for (int i = 0; i < 2; i++)
+ {
+ if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+ {
+ vec[i] = *(ptr + i);
+ }
+ else
+ {
+ vec[i] = fval;
+ }
+ }
+ float32_t vec_f32[2] = {vec[0], vec[1]};
+ return wrapper::vload(vec_f32);
+}
+} // namespace
+
+template <typename T>
+void pooling2_nchw_maxpool_indices(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+ Iterator indices(dst1, window);
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const int pad_left = src->info()->padding().left;
+ const int pad_right = src->info()->padding().right;
+ const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
+ const T float_min = get_initial_min<T>(pool_info.use_inf_as_limit);
+ const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ auto top_data =
+ read_2_boundary_aware_as_f32(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+ auto bottom_data =
+ read_2_boundary_aware_as_f32(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+ // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
+ const float32x2_t max_data_top = vpmax_f32(top_data, top_data);
+ const float32x2_t max_data_bottom = vpmax_f32(bottom_data, bottom_data);
+ const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
+ *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
+
+ // Calculate max data indice, which will be used in max unpool.
+ const uint32_t offset_base =
+ offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
+ const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
+ const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
+ const uint32x2_t voffset_top = {offset_top, offset_top + 1u};
+ const uint32x2_t voffset_bottom = {offset_bottom, offset_bottom + 1u};
+ const uint32x2_t tmp_indices_top =
+ vbsl_u32(vcge_f32(top_data, vrev64_f32(top_data)), voffset_top, vrev64_u32(voffset_top));
+ const uint32x2_t tmp_indices_bottom =
+ vbsl_u32(vcge_f32(bottom_data, vrev64_f32(bottom_data)), voffset_bottom, vrev64_u32(voffset_bottom));
+ *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(
+ vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
+ },
+ in, out, indices);
+}
+
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // ENABLE_NCHW_KERNELS
+
+#endif // ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H
diff --git a/src/cpu/kernels/pool2d/neon/list.h b/src/cpu/kernels/pool2d/neon/list.h
new file mode 100644
index 0000000000..5db843d56b
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/list.h
@@ -0,0 +1,113 @@
+/*
+ * Copyright (c) 2021, 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ACL_SRC_CPU_KERNELS_POOL2D_NEON_LIST_H
+#define ACL_SRC_CPU_KERNELS_POOL2D_NEON_LIST_H
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/cpu/kernels/pool2d/neon/quantized.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+#define DECLARE_POOLING_KERNEL(func_name) \
+ void func_name(const ITensor *src0, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &, const Window &window_src, \
+ const Window &window)
+
+DECLARE_POOLING_KERNEL(poolingMxN_qasymm8_neon_nhwc);
+DECLARE_POOLING_KERNEL(poolingMxN_qasymm8_signed_neon_nhwc);
+DECLARE_POOLING_KERNEL(poolingMxN_fp16_neon_nhwc);
+DECLARE_POOLING_KERNEL(poolingMxN_fp32_neon_nhwc);
+
+#if defined(ENABLE_NCHW_KERNELS)
+
+#if defined(ENABLE_FP16_KERNELS)
+DECLARE_POOLING_KERNEL(pooling2_fp16_neon_nchw);
+DECLARE_POOLING_KERNEL(pooling3_fp16_neon_nchw);
+DECLARE_POOLING_KERNEL(poolingMxN_fp16_neon_nchw);
+#endif /* defined(ENABLE_FP16_KERNELS) */
+
+DECLARE_POOLING_KERNEL(pooling2_fp32_neon_nchw);
+DECLARE_POOLING_KERNEL(pooling3_fp32_neon_nchw);
+DECLARE_POOLING_KERNEL(pooling7_fp32_neon_nchw);
+DECLARE_POOLING_KERNEL(poolingMxN_fp32_neon_nchw);
+#endif /* defined(ENABLE_NCHW_KERNELS) */
+
+#undef DECLARE_POOLING_KERNEL
+
+template <typename T>
+T get_initial_min(bool use_inf_as_limit)
+{
+ return use_inf_as_limit ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::lowest();
+}
+
+template <typename T>
+inline uint32_t offset_no_padding(uint32_t padded_offset,
+ const Coordinates &id,
+ const ITensorInfo &info,
+ int pool_stride_x,
+ int pool_stride_y,
+ DataLayout data_layout)
+{
+ const int pad_left = info.padding().left;
+ const int pad_right = info.padding().right;
+ const int pad_top = info.padding().top;
+ const int pad_bottom = info.padding().bottom;
+ const int in_stride_y = static_cast<int>(info.strides_in_bytes().y());
+ const int in_stride_w = static_cast<int>(info.strides_in_bytes()[3]);
+ const int pad_horiz = pad_left + pad_right;
+ const int pad_vert = pad_top + pad_bottom;
+
+ if (data_layout == DataLayout::NCHW)
+ {
+ const uint32_t offset_base =
+ padded_offset - sizeof(T) * pad_horiz * id.y() * pool_stride_y /* subtract padding elems per row */
+ - pad_top * sizeof(T) /* top padding */
+ - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() -
+ pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
+ - in_stride_w * id[3];
+
+ return offset_base;
+ }
+ else
+ {
+ const uint32_t offset_base = padded_offset -
+ sizeof(T) * pad_horiz * id.y() * pool_stride_x // subtract padding elems per row
+ - pad_top * sizeof(T) // top padding
+ - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() *
+ pool_stride_y // for each Z plane there are width*pad_right padding elems
+ - in_stride_w * id[3];
+
+ return offset_base;
+ }
+}
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // ACL_SRC_CPU_KERNELS_POOL2D_NEON_LIST_H
diff --git a/src/cpu/kernels/pool2d/neon/nchw/all.cpp b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
new file mode 100644
index 0000000000..0602bea667
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
@@ -0,0 +1,462 @@
+/*
+ * Copyright (c) 2021-2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/impl.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+#include <limits>
+
+#ifdef ENABLE_NCHW_KERNELS
+namespace arm_compute
+{
+namespace cpu
+{
+#define READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ (x == width + pad_left - 1) ? vset_lane_f32(*(ptr), vdup_n_f32(fval), 0) : vld1_f32(ptr)
+#define READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1) \
+ : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) \
+ ? vdup_n_f32(fval) \
+ : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+
+#define READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ vcombine_f32(READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval), \
+ READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 2), y, (ptr + 2), fval))
+
+float32x4x2_t
+read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
+{
+ float32x4x2_t vec;
+ vec.val[0] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval);
+ vec.val[1] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 4), y, (ptr + 4), fval);
+ return vec;
+}
+
+void poolingMxN_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ float res = 0.0f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data *= data;
+ }
+
+ res += data;
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+ }
+ else // if max pooling
+ {
+ res = min_value;
+
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ res = std::max(res, data);
+ }
+ }
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = res;
+ },
+ in, out);
+}
+
+void pooling2_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ if (pool_info.pool_type == PoolingType::MAX && dst1)
+ {
+ pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
+ }
+ else
+ {
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+ constexpr int pool_size = 2;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ auto top_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ in_top_ptr, fill_value);
+ auto bottom_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ in_bottom_ptr, fill_value);
+ float32x2_t res = {};
+ float final_res = 0;
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f32(top_data, top_data);
+ bottom_data = vmul_f32(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Perform pooling
+ const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
+ res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+ }
+ else
+ {
+ const float32x2_t max_data = vmax_f32(top_data, bottom_data);
+ res = vpmax_f32(max_data, max_data);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+ }
+}
+
+void pooling3_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ constexpr const int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_middle_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+ const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+ auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr,
+ fill_value);
+ auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ in_middle_ptr, fill_value);
+ auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2,
+ in_bottom_ptr, fill_value);
+
+ float32x2_t res = {};
+ float final_res = 0;
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmulq_f32(top_data, top_data);
+ middle_data = vmulq_f32(middle_data, middle_data);
+ bottom_data = vmulq_f32(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Perform pooling
+ const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
+ res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
+ res = vmul_f32(vpadd_f32(res, res), scale_v);
+ }
+ else
+ {
+ const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
+ res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
+ res = vpmax_f32(res, res);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+}
+
+void pooling7_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ constexpr const int pool_size = 7;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ std::array<const uint8_t *, pool_size> src_ptrs{{}};
+ for (int i = 0; i < pool_size; ++i)
+ {
+ src_ptrs[i] =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
+ }
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
+
+ auto x_val = id.x() * pool_stride_x;
+ auto y_val = id.y() * pool_stride_y;
+ float32x4x2_t data =
+ read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
+
+ float32x2_t res = {};
+ float final_res = 0.f;
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+ data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+ }
+ float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
+ for (int i = 1; i < pool_size; ++i)
+ {
+ in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+
+ x_val = id.x() * pool_stride_x;
+ y_val = (id.y() * pool_stride_y) + i;
+ data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr,
+ fill_value);
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+ data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+ }
+ sum_data = vaddq_f32(sum_data, data.val[0]);
+ sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+ }
+ res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
+ res = vmul_f32(vpadd_f32(res, res), scale_v);
+ }
+ else
+ {
+ for (int i = 1; i < pool_size; ++i)
+ {
+ in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+
+ x_val = id.x() * pool_stride_x;
+ y_val = (id.y() * pool_stride_y) + i;
+ float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val,
+ in_ptr, fill_value);
+ data = vmax2q_f32(data, temp);
+ }
+ res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
+ res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
+ res = vpmax_f32(res, res);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+}
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // ENABLE_NCHW_KERNELS
diff --git a/src/cpu/kernels/pool2d/neon/qasymm8.cpp b/src/cpu/kernels/pool2d/neon/qasymm8.cpp
new file mode 100644
index 0000000000..44675b5394
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/qasymm8.cpp
@@ -0,0 +1,47 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+void poolingMxN_qasymm8_neon_nhwc(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ poolingMxN_q8_neon_nhwc<uint8_t>(src, dst0, dst1, pool_info, window_src, window);
+}
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp b/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp
new file mode 100644
index 0000000000..d434323e89
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/qasymm8_signed.cpp
@@ -0,0 +1,47 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/cpu/kernels/pool2d/neon/list.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+void poolingMxN_qasymm8_signed_neon_nhwc(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ poolingMxN_q8_neon_nhwc<int8_t>(src, dst0, dst1, pool_info, window_src, window);
+}
+} // namespace cpu
+} // namespace arm_compute
diff --git a/src/cpu/kernels/pool2d/neon/quantized.h b/src/cpu/kernels/pool2d/neon/quantized.h
new file mode 100644
index 0000000000..38f1b2f1f9
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/quantized.h
@@ -0,0 +1,832 @@
+/*
+ * Copyright (c) 2021-2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef SRC_CORE_NEON_KERNELS_QUANTIZED_H
+#define SRC_CORE_NEON_KERNELS_QUANTIZED_H
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/PoolingHelpers.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/NEFixedPoint.h"
+#include "src/core/NEON/NEMath.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+template <typename T>
+void poolingMxN_q8_neon_nhwc(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 16;
+ const int window_half_step_x = window_step_x / 2;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window_out);
+
+ using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
+ using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+ using q32_t = typename wrapper::traits::promote_t<q16_t>;
+ using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+
+ const float32x4_t half_scale_v = vdupq_n_f32(0.5f);
+ const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform();
+
+ const float quant_rescale = dst_qinfo.scale / src_qinfo.scale;
+ // "new_offset" doesn't have to consider the "half_scale_v" in its computation
+ // With a requantization performed in a single step there won't be uncertainties introduced
+ const int32_t new_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / quant_rescale);
+
+ const float requant_scale = dst_qinfo.scale / src_qinfo.scale;
+ const int32_t requant_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+ const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = id.y() * pool_stride_x;
+ const int idx_height = id.z() * pool_stride_y;
+ const int pool_limit_y = pool_pad_top - idx_height;
+ const int pool_limit_x = pool_pad_left - idx_width;
+
+ const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+ const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+ const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+ const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+ int x_off = window_start_x;
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+ q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+ q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+ q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const q8x16_t data = wrapper::vloadq(
+ reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+
+ const q16x8_t data_q16 = wrapper::vmovl(wrapper::vgetlow(data));
+ const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
+ vres1 = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
+ vres2 = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
+ vres3 = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
+ vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
+ }
+ }
+
+ if (src_qinfo != dst_qinfo)
+ {
+ const float32x4x4_t vres = {{
+ vcvtq_f32_q32(vres1),
+ vcvtq_f32_q32(vres2),
+ vcvtq_f32_q32(vres3),
+ vcvtq_f32_q32(vres4),
+ }};
+ const auto requantized_dst =
+ vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst));
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8,
+ wrapper::vgethigh(requantized_dst));
+ }
+ else
+ {
+ const float32x4_t scale_v = vdupq_n_f32(scale);
+ // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+ vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
+ vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
+ vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
+ vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
+
+ const q8x8_t res1 =
+ wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
+ const q8x8_t res2 =
+ wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, res1);
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, res2);
+ }
+ }
+ else
+ {
+ q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const q8x16_t data = wrapper::vloadq(
+ reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ vres = wrapper::vmax(vres, data);
+ }
+ }
+
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
+ (src_qinfo != dst_qinfo)
+ ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres),
+ wrapper::vgethigh(vres), requant_qinfo)
+ : vres);
+ }
+ }
+
+ if (pool_info.pool_type == PoolingType::MAX)
+ {
+ for (; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
+ {
+ q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const q8x8_t data = wrapper::vload(
+ reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ vres = wrapper::vmax(vres, data);
+ }
+ }
+
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
+ (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
+ }
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ q32_t res = static_cast<q32_t>(0.f);
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const T data =
+ *(reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ res += data;
+ }
+ }
+
+ if (src_qinfo != dst_qinfo)
+ {
+ const float res_f = static_cast<float>(res);
+ const float new_scale = quant_rescale / scale;
+ const auto requantized_dst = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
+
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = requantized_dst;
+ }
+ else
+ {
+ // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+ res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
+
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ }
+ else
+ {
+ T res = std::numeric_limits<T>::min();
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const T data =
+ *(reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ res = std::max(res, data);
+ }
+ }
+
+ // Store result
+ if (src_qinfo != dst_qinfo)
+ {
+ const float res_f = static_cast<float>(res);
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
+ }
+ else
+ {
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ }
+ }
+ },
+ in, out);
+}
+
+#if defined(ENABLE_NCHW_KERNELS)
+template <typename T, typename TVec>
+inline void scale_vector_q16x8(bool exclude_padding,
+ TVec &v,
+ const Coordinates &id,
+ int id_offset,
+ int step,
+ const int pool_size,
+ const int upper_bound_w,
+ const int upper_bound_h,
+ const int pad_x,
+ const int pad_y,
+ const int stride_x,
+ const int stride_y)
+{
+ int start_x = (id.x() + id_offset) * stride_x - pad_x;
+ int start_y = id.y() * stride_y - pad_y;
+ const int end_y = std::min(start_y + pool_size, upper_bound_h);
+ if (exclude_padding)
+ {
+ start_y = std::max(0, start_y);
+ }
+
+ std::array<T, 8> elems = {{
+ wrapper::vgetlane(v, 0),
+ wrapper::vgetlane(v, 1),
+ wrapper::vgetlane(v, 2),
+ wrapper::vgetlane(v, 3),
+ wrapper::vgetlane(v, 4),
+ wrapper::vgetlane(v, 5),
+ wrapper::vgetlane(v, 6),
+ wrapper::vgetlane(v, 7),
+ }};
+
+ for (auto &el : elems)
+ {
+ int c_start_x = start_x;
+ const int end_x = std::min(c_start_x + pool_size, upper_bound_w);
+ if (exclude_padding)
+ {
+ c_start_x = std::max(0, c_start_x);
+ }
+ float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
+ el *= scale;
+ start_x += step * stride_x;
+ }
+
+ v = wrapper::vsetlane(elems[0], v, 0);
+ v = wrapper::vsetlane(elems[1], v, 1);
+ v = wrapper::vsetlane(elems[2], v, 2);
+ v = wrapper::vsetlane(elems[3], v, 3);
+ v = wrapper::vsetlane(elems[4], v, 4);
+ v = wrapper::vsetlane(elems[5], v, 5);
+ v = wrapper::vsetlane(elems[6], v, 6);
+ v = wrapper::vsetlane(elems[7], v, 7);
+}
+
+template <typename T>
+auto load16_boundary_aware(
+ int srcw, int srch, int pad_l, int pad_r, int pad_t, int pad_b, int x, int y, const T *ptr, T fval)
+{
+ ARM_COMPUTE_UNUSED(pad_b, pad_r);
+ T vec[16];
+ //handle reading a row out of the tensor
+ const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
+ for (int i = 0; i < 16; i++)
+ {
+ if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+ {
+ vec[i] = *(ptr + i);
+ }
+ else
+ {
+ vec[i] = fval;
+ }
+ }
+ return wrapper::vloadq(vec);
+}
+
+template <typename T, typename V, bool deinterleave>
+inline void write16_boundary_aware(int x, int dst_w, const V &lower, const V &upper, T *ptr)
+{
+ if (deinterleave)
+ {
+ for (int i = 0; i < 8 && (i * 2 + x) < dst_w; ++i)
+ {
+ *(ptr + i * 2) = lower[i];
+ }
+ for (int i = 0; i < 8 && (i * 2 + x + 1) < dst_w; ++i)
+ {
+ *(ptr + 1 + i * 2) = upper[i];
+ }
+ }
+ else
+ {
+ for (int i = 0; i < 8 && (i + x) < dst_w; ++i)
+ {
+ *(ptr + i) = lower[i];
+ }
+ for (int i = 0; i < 8 && (i + x + 8) < dst_w; ++i)
+ {
+ *(ptr + i + 8) = upper[i];
+ }
+ }
+}
+
+template <typename T, typename V>
+inline void write8_boundary_aware(int x, int dst_w, const V &v, T *ptr)
+{
+ for (int i = 0; i < 8 && (i + x) < dst_w; ++i)
+ {
+ *(ptr + i) = v[i];
+ }
+}
+
+template <typename T>
+void pooling2_quantized_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ /** SIMD vector types */
+ using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
+ using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q16x4_t = typename wrapper::traits::neon_vector<q16_t, 4>::type;
+ using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+ using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
+
+ constexpr int pool_size = 2;
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const T *const src_top_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+ const T *const src_bottom_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+ const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
+ const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform();
+ const bool have_different_qinfo = src_qinfo != dst_qinfo;
+
+ const float requant_scale = dst_qinfo.scale / src_qinfo.scale;
+ const int32_t requant_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+ const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int dst_w = dst0->info()->dimension(0);
+
+ const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? std::numeric_limits<T>::min() : T(0);
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+
+ auto top_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+ auto bottom_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+ q8x8_t lower_res = {};
+ q8x8_t upper_res = {};
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ const q16x8x2_t top_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}};
+ const q16x8x2_t bottom_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}};
+
+ // Add rows
+ const q16x8x2_t vrsum = {{
+ wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
+ wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
+ }};
+
+ // Pair-wise add row data
+ const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
+ const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
+
+ q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
+
+ // Scale lower result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_lower, id, 0, scale_step_x, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ lower_res = wrapper::vmovn(res_lower);
+
+ // Compute upper result for stride_x == 1
+ if (pool_stride_x == 1)
+ {
+ // Shifted row sum
+ const q16x8x2_t vrsum_shifted = {
+ {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}};
+
+ // Pair-wise add shifted row
+ q16x8_t res_upper = wrapper::vcombine(
+ wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
+ wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]),
+ wrapper::vgethigh(vrsum_shifted.val[1])));
+
+ // Scale upper result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_upper, id, 1, 2, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ upper_res = wrapper::vmovn(res_upper);
+ }
+ }
+ else
+ {
+ const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
+ lower_res = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
+ if (pool_stride_x == 1)
+ {
+ const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
+ upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
+ }
+ }
+
+ if (have_different_qinfo)
+ {
+ const auto requantized_dst = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
+ lower_res = wrapper::vgetlow(requantized_dst);
+ upper_res = wrapper::vgethigh(requantized_dst);
+ }
+ auto out_ptr = reinterpret_cast<T *>(out.ptr());
+ // Store result
+ if (pool_stride_x == 1)
+ {
+ write16_boundary_aware<T, q8x8_t, true>(id.x(), dst_w, lower_res, upper_res, out_ptr);
+ }
+ else
+ {
+ write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, lower_res, out_ptr);
+ }
+ },
+ in, out);
+}
+
+template <typename T>
+void pooling3_quantized_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ /** SIMD vector types */
+ using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
+ using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+ using q8x8x2_t = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+ using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
+
+ constexpr int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+
+ const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();
+
+ const float requant_scale = dst_qinfo.scale / src_qinfo.scale;
+ const int32_t requant_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+ const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+
+ const T *const src_top_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+ const T *const src_middle_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+ const T *const src_bottom_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
+
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
+ const int dst_w = dst0->info()->dimension(0);
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+
+ auto top_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+ auto middle_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_1, reinterpret_cast<const T *>(src_middle_ptr + in.offset()), fill_value);
+ auto bottom_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_2, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+ q8x8_t fres = {};
+ q8x16_t fqres = {};
+
+ if (pool_info.pool_type == PoolingType::AVG)
+ {
+ // Convert data to u16
+ const q16x8x2_t top_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}};
+ const q16x8x2_t middle_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data))}};
+ const q16x8x2_t bottom_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}};
+
+ // Calculate row sums
+ const q16x8x2_t vrsum = {{
+ wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
+ wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
+ }};
+ const q16x8x2_t vrsum_shifted_1 = {
+ {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}};
+ const q16x8x2_t vrsum_shifted_2 = {
+ {wrapper::vext_2(vrsum.val[0], vrsum.val[1]), wrapper::vext_2(vrsum.val[1], vrsum.val[1])}};
+ // Calculate final sum
+ q16x8x2_t final_sum = {{
+ wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
+ wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
+ }};
+ if (pool_stride_x == 2)
+ {
+ q16x8_t res = {
+ wrapper::vgetlane(final_sum.val[0], 0), wrapper::vgetlane(final_sum.val[0], 2),
+ wrapper::vgetlane(final_sum.val[0], 4), wrapper::vgetlane(final_sum.val[0], 6),
+ wrapper::vgetlane(final_sum.val[1], 0), wrapper::vgetlane(final_sum.val[1], 2),
+ wrapper::vgetlane(final_sum.val[1], 4), wrapper::vgetlane(final_sum.val[1], 6),
+ };
+
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res, id, 0, 1, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ fres = wrapper::vmovn(res);
+ }
+ else
+ {
+ // Scale lower result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[0], id, 0, 1, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ // Scale lower result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[1], id, 8, 1, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
+ }
+ }
+ else
+ {
+ const q8x16_t max_data = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
+ const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
+ const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
+ const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
+
+ if (pool_stride_x == 2)
+ {
+ const q8x8x2_t table = {{wrapper::vgetlow(final_max), wrapper::vgethigh(final_max)}};
+ static const q8x8_t lookup_val = {0, 2, 4, 6, 8, 10, 12, 14};
+ fres = wrapper::vtbl(table, lookup_val);
+ }
+ else
+ {
+ fqres = final_max;
+ }
+ }
+
+ // Store result
+ if (pool_stride_x == 1)
+ {
+ if (src_qinfo != dst_qinfo)
+ {
+ fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres),
+ requant_qinfo);
+ }
+ write16_boundary_aware<T, q8x8_t, false>(id.x(), dst_w, wrapper::vgetlow(fqres),
+ wrapper::vgethigh(fqres), reinterpret_cast<T *>(out.ptr()));
+ }
+ else
+ {
+ if (src_qinfo != dst_qinfo)
+ {
+ fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
+ }
+ write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, fres, reinterpret_cast<T *>(out.ptr()));
+ }
+ },
+ in, out);
+}
+
+template <typename T>
+void poolingMxN_quantized_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ /** SIMD vector types */
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q32_t = typename wrapper::traits::promote_t<q16_t>;
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+
+ const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
+ const int stridex_in_bytes = static_cast<int>(src->info()->strides_in_bytes().x());
+ const int stridey_in_bytes = static_cast<int>(src->info()->strides_in_bytes().y());
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ T res = std::numeric_limits<T>::min();
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ q32_t sres = 0;
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto in_ptr = reinterpret_cast<const T *>(
+ in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
+ sres += data;
+ }
+ }
+ // Divide by scale
+ res = static_cast<T>(support::cpp11::round(sres * scale));
+ }
+ else
+ {
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto in_ptr = reinterpret_cast<const T *>(
+ in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
+ res = std::max(res, data);
+ }
+ }
+ }
+ // Store result
+ res = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(
+ Qasymm8QuantizationHelper<T>::dequantize(res, src_qinfo), dst_qinfo)
+ : res;
+ *(reinterpret_cast<T *>(out.ptr())) = res;
+ },
+ in, out);
+}
+#endif /* defined(ENABLE_NCHW_KERNELS) */
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // SRC_CORE_NEON_KERNELS_QUANTIZED_H