aboutsummaryrefslogtreecommitdiff
path: root/src/core/utils/quantization/AsymmHelpers.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/utils/quantization/AsymmHelpers.cpp')
-rw-r--r--src/core/utils/quantization/AsymmHelpers.cpp140
1 files changed, 90 insertions, 50 deletions
diff --git a/src/core/utils/quantization/AsymmHelpers.cpp b/src/core/utils/quantization/AsymmHelpers.cpp
index 49e39f663f..f8b74a985d 100644
--- a/src/core/utils/quantization/AsymmHelpers.cpp
+++ b/src/core/utils/quantization/AsymmHelpers.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -22,7 +22,11 @@
* SOFTWARE.
*/
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+
#include "arm_compute/core/Helpers.h"
+#include "arm_compute/function_info/ActivationLayerInfo.h"
+
+#include "src/core/utils/quantization/AsymmHelpers.h"
#include "support/ToolchainSupport.h"
#include <cmath>
@@ -38,7 +42,7 @@ constexpr float epsilon = 0.00001f;
Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
{
- if(multiplier >= 1.f)
+ if (multiplier >= 1.f)
{
Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
*shift *= -1;
@@ -61,25 +65,19 @@ Status calculate_quantized_multiplier_less_than_one(float multiplier,
ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
- if(std::fabs(0.0f - multiplier) < internal_epsilon)
- {
- *quant_multiplier = 0;
- *right_shift = 0;
- return Status{};
- }
int shift_exp = 0;
const double q = std::frexp(multiplier, &shift_exp);
*right_shift = -1 * shift_exp;
auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
- if(q_fixed == fixed_point_one_Q0)
+ if (q_fixed == fixed_point_one_Q0)
{
q_fixed /= 2;
--*right_shift;
}
- if(ignore_epsilon && *right_shift > 31)
+ if (ignore_epsilon && *right_shift > 31)
{
*right_shift = 0;
q_fixed = 0;
@@ -92,9 +90,8 @@ Status calculate_quantized_multiplier_less_than_one(float multiplier,
return Status{};
}
-Status calculate_quantized_multiplier_greater_than_one(float multiplier,
- int32_t *quantized_multiplier,
- int32_t *left_shift)
+Status
+calculate_quantized_multiplier_greater_than_one(float multiplier, int32_t *quantized_multiplier, int32_t *left_shift)
{
ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
@@ -105,7 +102,7 @@ Status calculate_quantized_multiplier_greater_than_one(float multiplier,
*left_shift = shift_exp;
auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
- if(q_fixed == fixed_point_one_Q0)
+ if (q_fixed == fixed_point_one_Q0)
{
q_fixed /= 2;
++*left_shift;
@@ -117,27 +114,27 @@ Status calculate_quantized_multiplier_greater_than_one(float multiplier,
return Status{};
}
-arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
- const QuantizationInfo &wq_info,
- const QuantizationInfo &oq_info,
+arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
+ const QuantizationInfo &wq_info,
+ const QuantizationInfo &oq_info,
GEMMLowpOutputStageInfo &stage_info)
{
ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
-
- const unsigned int size = wq_info.scale().size();
-
- auto &quant_multipliers = stage_info.gemmlowp_multipliers;
- auto &quant_shifts = stage_info.gemmlowp_shifts;
- quant_multipliers.resize(size);
- quant_shifts.resize(size);
+ constexpr unsigned int padding_elems = 32; // assembly kernels assume the shifts and multipliers buffers are padded
+ const unsigned int size = wq_info.scale().size();
+ const size_t padded_size = (size == 1) ? 1 : size + padding_elems;
+ auto &quant_multipliers = stage_info.gemmlowp_multipliers;
+ auto &quant_shifts = stage_info.gemmlowp_shifts;
+ quant_multipliers.resize(padded_size);
+ quant_shifts.resize(padded_size);
const auto &w_scales = wq_info.scale();
const float i_scale = iq_info.scale().at(0);
const float o_scale = oq_info.scale().at(0);
- for(unsigned int i = 0; i < size; ++i)
+ for (unsigned int i = 0; i < size; ++i)
{
const float multiplier = i_scale * w_scales[i] / o_scale;
int32_t quant_multiplier = 0;
@@ -158,7 +155,7 @@ std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_ty
{
int min_quant_val = 0;
int max_quant_val = 0;
- switch(data_type)
+ switch (data_type)
{
case DataType::QASYMM8:
min_quant_val = std::numeric_limits<uint8_t>::min();
@@ -182,20 +179,60 @@ std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_ty
}
return std::make_pair(min_quant_val, max_quant_val);
}
+
+std::tuple<int32_t, int32_t> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info,
+ const ActivationLayerInfo &act_info,
+ DataType data_type)
+{
+ ARM_COMPUTE_ERROR_ON(data_type != DataType::QASYMM8 && data_type != DataType::QASYMM8_SIGNED);
+
+ const auto min_max = get_min_max(data_type);
+
+ int32_t type_min = std::get<0>(min_max).get<int32_t>();
+ int32_t type_max = std::get<1>(min_max).get<int32_t>();
+
+ const UniformQuantizationInfo q_unif = q_info.uniform();
+
+ if (act_info.enabled())
+ {
+ switch (act_info.activation())
+ {
+ case ActivationLayerInfo::ActivationFunction::RELU:
+ type_min = q_unif.offset;
+ break;
+ case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
+ type_min = q_unif.offset;
+ type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info)
+ : quantize_qasymm8_signed(act_info.a(), q_info);
+ break;
+ case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
+ type_min = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.b(), q_info)
+ : quantize_qasymm8_signed(act_info.b(), q_info);
+ type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info)
+ : quantize_qasymm8_signed(act_info.a(), q_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Activation function not supported.");
+ break;
+ }
+ }
+
+ return std::make_tuple(type_min, type_max);
+}
+
void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *output,
- unsigned int idx_ofms,
int32_t *output_multipliers_ptr,
int32_t *output_shifts_ptr)
{
- const unsigned int num_filters = is_data_type_quantized_per_channel(weights->data_type()) ? weights->dimension(idx_ofms) : 1;
-
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const QuantizationInfo wq_info = weights->quantization_info();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
- for(unsigned int i = 0; i < num_filters; ++i)
+ const unsigned int num_filters = wq_info.scale().size();
+
+ for (unsigned int i = 0; i < num_filters; ++i)
{
int32_t output_multiplier = 0;
int32_t output_shift = 0;
@@ -209,13 +246,14 @@ void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
{
- bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
- int64_t a_64(a);
- int64_t b_64(b);
- int64_t ab_64 = a_64 * b_64;
- bool is_positive_or_zero = a == 0 || b == 0 || (std::signbit(a) == std::signbit(b));
- int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
- int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
+ bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
+ int64_t a_64(a);
+ int64_t b_64(b);
+ int64_t ab_64 = a_64 * b_64;
+ const bool is_positive_or_zero =
+ a == 0 || b == 0 || (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
+ int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
+ int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
}
@@ -235,11 +273,11 @@ int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t sh
int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
{
- if(exponent == 0)
+ if (exponent == 0)
{
return v;
}
- else if(exponent < 0)
+ else if (exponent < 0)
{
return rounding_divide_by_pow2(v, -exponent);
}
@@ -259,11 +297,14 @@ int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
}
}
-void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
+void get_invsqrt_quantized_multiplier_exp(int32_t input,
+ int32_t reverse_shift,
+ int32_t &output_inv_sqrt,
+ int32_t &output_shift)
{
ARM_COMPUTE_ERROR_ON(input < 0);
- if(input <= 1)
+ if (input <= 1)
{
// dealing the inputs (0 and 1) separately to avoid overflow
output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
@@ -273,7 +314,7 @@ void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift,
// prepare input for fixed point operation and compute shift value
output_shift = 11;
- while(input >= (1 << 29))
+ while (input >= (1 << 29))
{
input /= 4;
++output_shift;
@@ -302,9 +343,7 @@ void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift,
// multiplication of two fixed point numbers, defined for readability
auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
- {
- return saturating_rounding_doubling_highmul(a, b);
- };
+ { return saturating_rounding_doubling_highmul(a, b); };
// rescaling of fixed point to have dst_bit integer bits, defined for readability
auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
@@ -315,17 +354,18 @@ void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift,
// 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
constexpr int32_t num_iteration = 5;
- for(int32_t i = 0; i < num_iteration; ++i)
+ for (int32_t i = 0; i < num_iteration; ++i)
{
const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
- x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
+ x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3),
+ 6, fixedpoint_position);
}
// fixed point representation of sqrt(1/2)
const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
output_inv_sqrt = x;
- if(output_shift < 0)
+ if (output_shift < 0)
{
output_inv_sqrt <<= -output_shift;
output_shift = 0;
@@ -333,5 +373,5 @@ void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift,
// convert right shift to left shift
output_shift *= reverse_shift;
}
-} // quantization
-} // arm_compute
+} // namespace quantization
+} // namespace arm_compute