aboutsummaryrefslogtreecommitdiff
path: root/src/core/utils/quantization/AsymmHelpers.cpp
blob: f8b74a985d37824a99d832b9471c2eccb7a7c31d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
 * Copyright (c) 2017-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/function_info/ActivationLayerInfo.h"

#include "src/core/utils/quantization/AsymmHelpers.h"
#include "support/ToolchainSupport.h"

#include <cmath>
#include <limits>
#include <numeric>

namespace arm_compute
{
namespace quantization
{
constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
constexpr float   epsilon            = 0.00001f;

Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
{
    if (multiplier >= 1.f)
    {
        Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
        *shift *= -1;
        return status;
    }
    else
    {
        return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
    }
}

Status calculate_quantized_multiplier_less_than_one(float    multiplier,
                                                    int32_t *quant_multiplier,
                                                    int32_t *right_shift,
                                                    bool     ignore_epsilon)
{
    const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;

    ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
    ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
    ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
    ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);

    int          shift_exp = 0;
    const double q         = std::frexp(multiplier, &shift_exp);
    *right_shift           = -1 * shift_exp;
    auto q_fixed           = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
    ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
    if (q_fixed == fixed_point_one_Q0)
    {
        q_fixed /= 2;
        --*right_shift;
    }

    if (ignore_epsilon && *right_shift > 31)
    {
        *right_shift = 0;
        q_fixed      = 0;
    }

    ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
    ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
    *quant_multiplier = static_cast<int32_t>(q_fixed);

    return Status{};
}

Status
calculate_quantized_multiplier_greater_than_one(float multiplier, int32_t *quantized_multiplier, int32_t *left_shift)
{
    ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
    ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
    ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);

    int          shift_exp = 0;
    const double q         = std::frexp(multiplier, &shift_exp);
    *left_shift            = shift_exp;
    auto q_fixed           = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
    ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
    if (q_fixed == fixed_point_one_Q0)
    {
        q_fixed /= 2;
        ++*left_shift;
    }
    ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
    ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
    *quantized_multiplier = static_cast<int32_t>(q_fixed);

    return Status{};
}

arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo  &iq_info,
                                                    const QuantizationInfo  &wq_info,
                                                    const QuantizationInfo  &oq_info,
                                                    GEMMLowpOutputStageInfo &stage_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
    ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
    ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
    constexpr unsigned int padding_elems = 32; // assembly kernels assume the shifts and multipliers buffers are padded
    const unsigned int     size          = wq_info.scale().size();
    const size_t           padded_size   = (size == 1) ? 1 : size + padding_elems;
    auto                  &quant_multipliers = stage_info.gemmlowp_multipliers;
    auto                  &quant_shifts      = stage_info.gemmlowp_shifts;
    quant_multipliers.resize(padded_size);
    quant_shifts.resize(padded_size);

    const auto &w_scales = wq_info.scale();
    const float i_scale  = iq_info.scale().at(0);
    const float o_scale  = oq_info.scale().at(0);

    for (unsigned int i = 0; i < size; ++i)
    {
        const float multiplier       = i_scale * w_scales[i] / o_scale;
        int32_t     quant_multiplier = 0;
        int32_t     quant_shift      = 0;
        ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
        quant_multipliers[i] = quant_multiplier;
        quant_shifts[i]      = quant_shift;
    }

    // Legacy part
    stage_info.gemmlowp_shift      = quant_shifts[0];
    stage_info.gemmlowp_multiplier = quant_multipliers[0];

    return Status{};
}

std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
{
    int min_quant_val = 0;
    int max_quant_val = 0;
    switch (data_type)
    {
        case DataType::QASYMM8:
            min_quant_val = std::numeric_limits<uint8_t>::min();
            max_quant_val = std::numeric_limits<uint8_t>::max();
            break;
        case DataType::QSYMM8:
        case DataType::QASYMM8_SIGNED:
            min_quant_val = std::numeric_limits<int8_t>::min();
            max_quant_val = std::numeric_limits<int8_t>::max();
            break;
        case DataType::QASYMM16:
            min_quant_val = std::numeric_limits<uint16_t>::min();
            max_quant_val = std::numeric_limits<uint16_t>::max();
            break;
        case DataType::QSYMM16:
            min_quant_val = std::numeric_limits<int16_t>::min();
            max_quant_val = std::numeric_limits<int16_t>::max();
            break;
        default:
            ARM_COMPUTE_ERROR("Unsupported data type");
    }
    return std::make_pair(min_quant_val, max_quant_val);
}

std::tuple<int32_t, int32_t> get_quantized_asymmetric_output_min_max(const QuantizationInfo    &q_info,
                                                                     const ActivationLayerInfo &act_info,
                                                                     DataType                   data_type)
{
    ARM_COMPUTE_ERROR_ON(data_type != DataType::QASYMM8 && data_type != DataType::QASYMM8_SIGNED);

    const auto min_max = get_min_max(data_type);

    int32_t type_min = std::get<0>(min_max).get<int32_t>();
    int32_t type_max = std::get<1>(min_max).get<int32_t>();

    const UniformQuantizationInfo q_unif = q_info.uniform();

    if (act_info.enabled())
    {
        switch (act_info.activation())
        {
            case ActivationLayerInfo::ActivationFunction::RELU:
                type_min = q_unif.offset;
                break;
            case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
                type_min = q_unif.offset;
                type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info)
                                                            : quantize_qasymm8_signed(act_info.a(), q_info);
                break;
            case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
                type_min = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.b(), q_info)
                                                            : quantize_qasymm8_signed(act_info.b(), q_info);
                type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info)
                                                            : quantize_qasymm8_signed(act_info.a(), q_info);
                break;
            default:
                ARM_COMPUTE_ERROR("Activation function not supported.");
                break;
        }
    }

    return std::make_tuple(type_min, type_max);
}

void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
                                              const ITensorInfo *weights,
                                              const ITensorInfo *output,
                                              int32_t           *output_multipliers_ptr,
                                              int32_t           *output_shifts_ptr)
{
    const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
    const QuantizationInfo        wq_info = weights->quantization_info();
    const UniformQuantizationInfo oq_info = output->quantization_info().uniform();

    const unsigned int num_filters = wq_info.scale().size();

    for (unsigned int i = 0; i < num_filters; ++i)
    {
        int32_t     output_multiplier = 0;
        int32_t     output_shift      = 0;
        const float multiplier        = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
        calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);

        output_multipliers_ptr[i] = output_multiplier;
        output_shifts_ptr[i]      = output_shift;
    }
}

int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
{
    bool       overflow = a == b && a == std::numeric_limits<int32_t>::min();
    int64_t    a_64(a);
    int64_t    b_64(b);
    int64_t    ab_64 = a_64 * b_64;
    const bool is_positive_or_zero =
        a == 0 || b == 0 || (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
    int32_t nudge        = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
    int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
    return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
}

inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
{
    const int32_t mask      = (1 << exponent) - 1;
    const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
    return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
}

int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
{
    const auto left_shift  = shift > 0 ? shift : 0;
    const auto right_shift = shift > 0 ? 0 : -shift;
    return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
}

int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
{
    if (exponent == 0)
    {
        return v;
    }
    else if (exponent < 0)
    {
        return rounding_divide_by_pow2(v, -exponent);
    }
    else
    {
        constexpr auto min   = std::numeric_limits<int32_t>::min();
        constexpr auto max   = std::numeric_limits<int32_t>::max();
        const auto     width = sizeof(int32_t) * 8;

        const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
        bool          pos_mask  = v > threshold;
        bool          neg_mask  = v < -threshold;
        int32_t       result    = v << exponent;
        result                  = pos_mask ? max : result;
        result                  = neg_mask ? min : result;
        return result;
    }
}

void get_invsqrt_quantized_multiplier_exp(int32_t  input,
                                          int32_t  reverse_shift,
                                          int32_t &output_inv_sqrt,
                                          int32_t &output_shift)
{
    ARM_COMPUTE_ERROR_ON(input < 0);

    if (input <= 1)
    {
        // dealing the inputs (0 and 1) separately to avoid overflow
        output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
        output_shift    = 0;
        return;
    }

    // prepare input for fixed point operation and compute shift value
    output_shift = 11;
    while (input >= (1 << 29))
    {
        input /= 4;
        ++output_shift;
    }

    const uint32_t max_left_shift_bits       = __builtin_clz(static_cast<uint32_t>(input)) - 1;
    const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
    const uint32_t left_shift_bit_pairs      = max_left_shift_bits_pairs - 1;
    output_shift -= left_shift_bit_pairs;
    input <<= 2 * left_shift_bit_pairs;

    // Calculation in fixed point domain with 3 integer bits.
    using FixedPointRawType                    = int32_t;
    constexpr uint32_t fixedpoint_position     = 3;
    constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
    using FixedPoint3                          = FixedPointRawType;
    using FixedPoint0                          = FixedPointRawType;

    // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
    const FixedPoint3 fixedpoint_input      = (input >> 1);
    const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
    const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));

    // initial guess (1) in fixed point representation
    FixedPoint3 x = 0x1 << fixedpoint_int_position;

    // multiplication of two fixed point numbers, defined for readability
    auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
    { return saturating_rounding_doubling_highmul(a, b); };

    // rescaling of fixed point to have dst_bit integer bits, defined for readability
    auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
    {
        const uint32_t exponent = src_bit - dst_bit;
        return saturating_rounding_multiply_by_pow2(exponent, a);
    };

    // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
    constexpr int32_t num_iteration = 5;
    for (int32_t i = 0; i < num_iteration; ++i)
    {
        const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
        x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3),
                                6, fixedpoint_position);
    }

    // fixed point representation of sqrt(1/2)
    const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
    x                                        = fixed_point_mul(fixedpoint_half_sqrt_2, x);
    output_inv_sqrt                          = x;
    if (output_shift < 0)
    {
        output_inv_sqrt <<= -output_shift;
        output_shift = 0;
    }
    // convert right shift to left shift
    output_shift *= reverse_shift;
}
} // namespace quantization
} // namespace arm_compute