aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl')
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl372
1 files changed, 0 insertions, 372 deletions
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
deleted file mode 100644
index 22ae098772..0000000000
--- a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
+++ /dev/null
@@ -1,372 +0,0 @@
-/*
- * Copyright (c) 2021-2022 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h"
-#include "common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h"
-#include "common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h"
-
-#include "gemm_helpers.h"
-#include "repeat.h"
-
-/** (EXPERIMENTAL_POST_OPS) gemm_mm_native kernel */
-#if defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
-#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-
-#define VFMA(a, b, c) \
- ({ \
- c = fma(a, b, c); \
- })
-
-#if M0 == 1
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- })
-#elif M0 == 2 // M0 == 2
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- })
-#elif M0 == 3 // M0 == 3
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- })
-#elif M0 == 4 // M0 == 4
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- })
-#elif M0 == 5 // M0 == 5
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- })
-#elif M0 == 6 // M0 == 6
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- })
-#elif M0 == 7 // M0 == 7
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- })
-#elif M0 == 8 // M0 == 8
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
- })
-#else // M0 not supported
-#error "M0 not supported"
-#endif // M0 not supported
-
-#if defined(GEMM_MM_NATIVE_POST_ACT_ELTWISE_OP_ACT)
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
- * Post op 1: activation (optional)
- * Post op 2: elementwise op
- * Post op 3: activation (optional)
- *
- * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
- * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
- * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
- *
- * All parameters are similarly defined in kernel gemm_mm_native, with these additions:
- *
- * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
- * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
- * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
- * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
- */
-__kernel void gemm_mm_native_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- // Post Op arguments
- IMAGE_DECLARATION(eltwise_operand),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z,
- uint eltwise_operand_stride_z,
- const int M,
- const int N,
- const int K
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
-
- // Compute RHS matrix address
- uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_offset += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
-
- int i = 0;
-#if K0 > 1
- for(; i <= (K - K0); i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS matrix
- LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zero);
-
- RHS_VFMA_M0xN0(0, a, b0, c);
- RHS_VFMA_M0xN0(1, a, b1, c);
-#if K0 > 2
- RHS_VFMA_M0xN0(2, a, b2, c);
-#endif // K0 > 2
-#if K0 > 3
- RHS_VFMA_M0xN0(3, a, b3, c);
-#endif // K0 > 3
-#if K0 > 4
- RHS_VFMA_M0xN0(4, a, b4, c);
- RHS_VFMA_M0xN0(5, a, b5, c);
- RHS_VFMA_M0xN0(6, a, b6, c);
- RHS_VFMA_M0xN0(7, a, b7, c);
-#endif // K0 > 4
-#if K0 > 8
- RHS_VFMA_M0xN0(8, a, b8, c);
- RHS_VFMA_M0xN0(9, a, b9, c);
- RHS_VFMA_M0xN0(A, a, bA, c);
- RHS_VFMA_M0xN0(B, a, bB, c);
- RHS_VFMA_M0xN0(C, a, bC, c);
- RHS_VFMA_M0xN0(D, a, bD, c);
- RHS_VFMA_M0xN0(E, a, bE, c);
- RHS_VFMA_M0xN0(F, a, bF, c);
-#endif // K0 > 8
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- rhs_offset += K0 * rhs_stride_y;
- }
-#endif // K0 > 1
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0));
-#if M0 > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1));
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2));
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3));
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4));
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5));
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6));
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7));
-#endif // M0 > 7
-
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * rhs_stride_y));
- RHS_VFMA_M0xN0(0, a, b, c);
-
- lhs_offset += sizeof(DATA_TYPE);
- rhs_offset += rhs_stride_y;
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
-
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- const bool cond_y = y == 0;
- const bool cond_x = ((x + 1) * N0 >= N);
-
- // c = act(c)
- POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
- // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
- POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
- // c = act(c)
- POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
-
- // Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
-}
-#endif // defined(GEMM_MM_NATIVE_POST_ACT_ELTWISE_OP_ACT)
-#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)