aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
blob: 22ae0987722cc8bf211c1ebfe3f0d68e9cfe4bf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*
 * Copyright (c) 2021-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h"
#include "common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h"
#include "common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h"

#include "gemm_helpers.h"
#include "repeat.h"

/** (EXPERIMENTAL_POST_OPS) gemm_mm_native kernel */
#if defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)

#define VFMA(a, b, c)     \
    ({                    \
        c = fma(a, b, c); \
    })

#if M0 == 1
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
    })
#elif M0 == 2 // M0 == 2
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
    })
#elif M0 == 3 // M0 == 3
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
    })
#elif M0 == 4 // M0 == 4
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
    })
#elif M0 == 5 // M0 == 5
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
    })
#elif M0 == 6 // M0 == 6
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
    })
#elif M0 == 7 // M0 == 7
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
    })
#elif M0 == 8 // M0 == 8
#define RHS_VFMA_M0xN0(i, a, b, c)                                    \
    ({                                                                \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
        VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
    })
#else // M0 not supported
#error "M0 not supported"
#endif // M0 not supported

#if defined(GEMM_MM_NATIVE_POST_ACT_ELTWISE_OP_ACT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
 * Post op 1: activation (optional)
 * Post op 2: elementwise op
 * Post op 3: activation (optional)
 *
 * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
 * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
 * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
 * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
 * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
 *
 * All parameters are similarly defined in kernel gemm_mm_native, with these additions:
 *
 * @param[in] eltwise_operand_ptr      Pointer to the eltwise operand matrix. Supported data type: F16/F32
 * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
 * @param[in] eltwise_operand_step_x   eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
 * @param[in] eltwise_operand_step_y   eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
 */
__kernel void gemm_mm_native_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
                                                     IMAGE_DECLARATION(rhs),
#if defined(BETA)
                                                     IMAGE_DECLARATION(bias),
#endif // defined(BETA)
                                                     IMAGE_DECLARATION(dst),
                                                     // Post Op arguments
                                                     IMAGE_DECLARATION(eltwise_operand),
                                                     uint lhs_stride_z,
                                                     uint rhs_stride_z,
#if defined(BETA)
                                                     uint bias_stride_z,
#endif //defined(BETA)
                                                     uint      dst_stride_z,
                                                     uint      eltwise_operand_stride_z,
                                                     const int M,
                                                     const int N,
                                                     const int K
#if defined(REINTERPRET_INPUT_AS_3D)
                                                     ,
                                                     uint lhs_cross_plane_pad
#endif // REINTERPRET_INPUT_AS_3D
#if defined(REINTERPRET_OUTPUT_AS_3D)
                                                     ,
                                                     uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
                                                    )
{
    // Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))

    // RHS offset and step X
#define RHS_OFFSET_X (RHS_BLOCK_SIZE)

    uint x = get_global_id(0);
    uint y = get_global_id(1);
    uint z = get_global_id(2);

#if defined(DUMMY_WORK_ITEMS)
    if((x * N0 >= N) || (y * M0 >= M))
    {
        return;
    }
#endif // defined(DUMMY_WORK_ITEMS)

    // Compute LHS matrix address
    uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;

    // Compute RHS matrix address
    uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);

#if defined(MATRIX_B_DEPTH)
    // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
    rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
#else  // defined(MATRIX_B_DEPTH)
    rhs_offset += z * rhs_stride_z;
#endif // defined(MATRIX_B_DEPTH)

    REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
    REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);

#if defined(REINTERPRET_INPUT_AS_3D)
    // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
    CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);

    // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
    // multiply lhs_stride_z by DEPTH_GEMM3D
    lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;

#else // defined(REINTERPRET_INPUT_AS_3D)

    // Add offset for batched GEMM
    lhs_offset += z * lhs_stride_z;

#endif // defined(REINTERPRET_INPUT_AS_3D)

    // Initialize the accumulators
    REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0)    c0=0,c1=0,c2=0,... c(M0-1)=0;

    int i = 0;
#if K0 > 1
    for(; i <= (K - K0); i += K0)
    {
        // Supported cases (M0, K0):
        // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
        // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
        // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
        // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
        // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
        // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
        // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
        // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
        // Load values from LHS matrix
        LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);

        // Load values from RHS matrix
        LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zero);

        RHS_VFMA_M0xN0(0, a, b0, c);
        RHS_VFMA_M0xN0(1, a, b1, c);
#if K0 > 2
        RHS_VFMA_M0xN0(2, a, b2, c);
#endif // K0 > 2
#if K0 > 3
        RHS_VFMA_M0xN0(3, a, b3, c);
#endif // K0 > 3
#if K0 > 4
        RHS_VFMA_M0xN0(4, a, b4, c);
        RHS_VFMA_M0xN0(5, a, b5, c);
        RHS_VFMA_M0xN0(6, a, b6, c);
        RHS_VFMA_M0xN0(7, a, b7, c);
#endif // K0 > 4
#if K0 > 8
        RHS_VFMA_M0xN0(8, a, b8, c);
        RHS_VFMA_M0xN0(9, a, b9, c);
        RHS_VFMA_M0xN0(A, a, bA, c);
        RHS_VFMA_M0xN0(B, a, bB, c);
        RHS_VFMA_M0xN0(C, a, bC, c);
        RHS_VFMA_M0xN0(D, a, bD, c);
        RHS_VFMA_M0xN0(E, a, bE, c);
        RHS_VFMA_M0xN0(F, a, bF, c);
#endif // K0 > 8

        lhs_offset += K0 * sizeof(DATA_TYPE);
        rhs_offset += K0 * rhs_stride_y;
    }
#endif // K0 > 1
    // Left-over accumulations
    for(; i < K; ++i)
    {
        // Load values from LHS matrix
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0));
#if M0 > 1
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1));
#endif // M0 > 1
#if M0 > 2
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2));
#endif // M0 > 2
#if M0 > 3
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3));
#endif // M0 > 3
#if M0 > 4
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4));
#endif // M0 > 4
#if M0 > 5
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5));
#endif // M0 > 5
#if M0 > 6
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6));
#endif // M0 > 6
#if M0 > 7
        VEC_DATA_TYPE(DATA_TYPE, 2)
        a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7));
#endif // M0 > 7

        VEC_DATA_TYPE(DATA_TYPE, N0)
        b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * rhs_stride_y));
        RHS_VFMA_M0xN0(0, a, b, c);

        lhs_offset += sizeof(DATA_TYPE);
        rhs_offset += rhs_stride_y;
    }

    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);

    REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);

#if defined(REINTERPRET_OUTPUT_AS_3D)
    // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
    CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);

    // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
    // multiply dst_stride_z by DEPTH_GEMM3D
    dst_addr += z * dst_stride_z * DEPTH_GEMM3D;

#else // defined(REINTERPRET_OUTPUT_AS_3D)

    // Add offset for batched GEMM
    dst_addr += z * dst_stride_z;

#endif // defined(REINTERPRET_OUTPUT_AS_3D)

    // Multiply by the weight of matrix-matrix product and store the result
#if defined(ALPHA)
    SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
#endif // defined(ALPHA)

    // Add beta*bias
#if defined(BETA)
#if defined(BROADCAST_BIAS)
    __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));

    LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);

#ifndef UNIT_BETA
    SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
#endif // UNIT_BIAS

    // c = c + bias[broadcasted]
    ADD_BLOCK_BROADCAST(M0, c, bias0);

#else // defined(BROADCAST_BIAS)
    __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;

    LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);

#ifndef UNIT_BETA
    SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
#endif // UNIT_BIAS

    // c = c + bias
    ADD_BLOCK(M0, c, bias);

#endif // defined(BROADCAST_BIAS)
#endif // defined(BETA)

    const bool cond_y = y == 0;
    const bool cond_x = ((x + 1) * N0 >= N);

    // c = act(c)
    POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
    // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
    POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
    // c = act(c)
    POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);

    // Store output block
    STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
}
#endif // defined(GEMM_MM_NATIVE_POST_ACT_ELTWISE_OP_ACT)
#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
#endif // defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)