aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/NEAsymm.h
diff options
context:
space:
mode:
Diffstat (limited to 'arm_compute/core/NEON/NEAsymm.h')
-rw-r--r--arm_compute/core/NEON/NEAsymm.h760
1 files changed, 0 insertions, 760 deletions
diff --git a/arm_compute/core/NEON/NEAsymm.h b/arm_compute/core/NEON/NEAsymm.h
deleted file mode 100644
index e4f4250d16..0000000000
--- a/arm_compute/core/NEON/NEAsymm.h
+++ /dev/null
@@ -1,760 +0,0 @@
-/*
- * Copyright (c) 2017-2019 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NEASYMM_H
-#define ARM_COMPUTE_NEASYMM_H
-
-#include "arm_compute/core/NEON/NEMath.h"
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-using qasymm8x8_t = uint8x8_t; /**< 8 bit quantized asymmetric vector with 8 elements */
-using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
-using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
-using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
-using qasymm8x16_t = uint8x16_t; /**< 8 bit quantized asymmetric vector with 16 elements */
-
-using qasymm8x8_signed_t = int8x8_t; /**< 8 bit quantized signed asymmetric vector with 8 elements */
-using qasymm8x8x2_signed_t = int8x8x2_t; /**< 8 bit quantized signed asymmetric vector with 16 elements */
-using qasymm8x8x3_signed_t = int8x8x3_t; /**< 8 bit quantized signed asymmetric vector with 24 elements */
-using qasymm8x8x4_signed_t = int8x8x4_t; /**< 8 bit quantized signed asymmetric vector with 32 elements */
-using qasymm8x16_signed_t = int8x16_t; /**< 8 bit quantized signed asymmetric vector with 16 elements */
-
-/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
- *
- * vd*vs + vo
- *
- * @param[in] vd Input vector value in QASYMM8 format
- * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
- * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
- *
- * @return A 16-component vector in QASYMM8 format, saturated to fit
- */
-uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);
-
-/** Perform a multiply-accumulate on all 16 components of a QASYMM8_SIGNED vector
- *
- * vd*vs + vo
- *
- * @param[in] vd Input vector value in QASYMM8_SIGNED format
- * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
- * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
- *
- * @return A 16-component vector in QASYMM8_SIGNED format, saturated to fit
- */
-int8x16_t vmlaq_qasymm8_signed(qasymm8x16_signed_t vd, float32x4_t vs, float32x4_t vo);
-
-/** Performs final quantization step on 16 elements
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param in_s32 Input to be quantized.
- * @param result_fixedpoint_multiplier Result multiplier parameter
- * @param result_shift Result shift parameter
- * @param result_offset_after_shift_s32 Result offset parameter
- * @param min_u8 Relu lower bound
- * @param max_u8 Relu upper bound
- *
- * @return Quantized values
- */
-template <bool is_bounded_relu>
-uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
- int result_fixedpoint_multiplier,
- int32_t result_shift,
- int32x4_t result_offset_after_shift_s32,
- uint8x16_t min_u8,
- uint8x16_t max_u8)
-{
- const static int32x4_t zero_s32 = vdupq_n_s32(0);
-
- if(result_shift < 0)
- {
- in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
- in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
- in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
- in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));
-
- in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
- in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
- in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
- in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
- }
- else
- {
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
- in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
- in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
- in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
-
- // Round to the nearest division by a power-of-two using result_shift_s32
- in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
- in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
- in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
- in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
- }
-
- // Add the offset terms
- in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
- in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
- in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
- in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
-
- // Saturate negative values
- in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
- in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
- in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
- in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
-
- // Convert S32 to S16
- const int16x8x2_t in_s16 =
- {
- {
- vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
- vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
- }
- };
-
- // Convert S16 to U8
- uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
-
- if(is_bounded_relu)
- {
- out_u8 = vmaxq_u8(out_u8, min_u8);
- out_u8 = vminq_u8(out_u8, max_u8);
- }
-
- return out_u8;
-}
-
-/** Performs final quantization step on 16 elements
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param in_s32 Input to be quantized.
- * @param result_fixedpoint_multiplier Result multiplier parameter
- * @param result_shift Result shift parameter
- * @param result_offset_after_shift_s32 Result offset parameter
- * @param min_s8 Relu lower bound
- * @param max_s8 Relu upper bound
- *
- * @return Quantized values
- */
-template <bool is_bounded_relu>
-int8x16_t finalize_quantization(int32x4x4_t &in_s32,
- int result_fixedpoint_multiplier,
- int32_t result_shift,
- int32x4_t result_offset_after_shift_s32,
- int8x16_t min_s8,
- int8x16_t max_s8)
-{
- if(result_shift < 0)
- {
- in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
- in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
- in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
- in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));
-
- in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
- in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
- in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
- in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
- }
- else
- {
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
- in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
- in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
- in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
-
- // Round to the nearest division by a power-of-two using result_shift_s32
- in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
- in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
- in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
- in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
- }
-
- // Add the offset terms
- in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
- in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
- in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
- in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
-
- // Convert S32 to S16
- const int16x8x2_t in_s16 =
- {
- {
- vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
- vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
- }
- };
-
- // Convert S16 to S8
- int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
-
- if(is_bounded_relu)
- {
- out_s8 = vmaxq_s8(out_s8, min_s8);
- out_s8 = vminq_s8(out_s8, max_s8);
- }
-
- return out_s8;
-}
-
-/** Performs final quantization step on 16 elements for symmetric quantization
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param in_s32 Input to be quantized.
- * @param result_fixedpoint_multiplier Result multiplier parameter
- * @param result_shift Result shift parameter
- * @param result_offset_after_shift_s32 Result offset parameter
- * @param min_s8 Relu lower bound
- * @param max_s8 Relu upper bound
- *
- * @return Quantized values
- */
-template <bool is_bounded_relu>
-inline int8x16_t finalize_quantization_symm(int32x4x4_t &in_s32,
- const int32x4x4_t &result_fixedpoint_multiplier,
- const int32x4x4_t &result_shift,
- const int32x4_t &result_offset_after_shift_s32,
- const int8x16_t &min_s8,
- const int8x16_t &max_s8)
-{
- const static int32x4_t one_s32 = vdupq_n_s32(1);
-
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- int32x4x4_t res_shift_gt0 =
- {
- vqrdmulhq_s32(in_s32.val[0], result_fixedpoint_multiplier.val[0]),
- vqrdmulhq_s32(in_s32.val[1], result_fixedpoint_multiplier.val[1]),
- vqrdmulhq_s32(in_s32.val[2], result_fixedpoint_multiplier.val[2]),
- vqrdmulhq_s32(in_s32.val[3], result_fixedpoint_multiplier.val[3]),
- };
- // Round to the nearest division by a power-of-two using result_shift_s32
- res_shift_gt0.val[0] = rounding_divide_by_pow2(res_shift_gt0.val[0], result_shift.val[0]);
- res_shift_gt0.val[1] = rounding_divide_by_pow2(res_shift_gt0.val[1], result_shift.val[1]);
- res_shift_gt0.val[2] = rounding_divide_by_pow2(res_shift_gt0.val[2], result_shift.val[2]);
- res_shift_gt0.val[3] = rounding_divide_by_pow2(res_shift_gt0.val[3], result_shift.val[3]);
-
- int32x4x4_t res_shift_lt0 =
- {
- vmulq_s32(in_s32.val[0], vshlq_s32(one_s32, vnegq_s32(result_shift.val[0]))),
- vmulq_s32(in_s32.val[1], vshlq_s32(one_s32, vnegq_s32(result_shift.val[1]))),
- vmulq_s32(in_s32.val[2], vshlq_s32(one_s32, vnegq_s32(result_shift.val[2]))),
- vmulq_s32(in_s32.val[3], vshlq_s32(one_s32, vnegq_s32(result_shift.val[3]))),
- };
- res_shift_lt0.val[0] = vqrdmulhq_s32(res_shift_lt0.val[0], result_fixedpoint_multiplier.val[0]);
- res_shift_lt0.val[1] = vqrdmulhq_s32(res_shift_lt0.val[1], result_fixedpoint_multiplier.val[1]);
- res_shift_lt0.val[2] = vqrdmulhq_s32(res_shift_lt0.val[2], result_fixedpoint_multiplier.val[2]);
- res_shift_lt0.val[3] = vqrdmulhq_s32(res_shift_lt0.val[3], result_fixedpoint_multiplier.val[3]);
-
- // Select result depending on shift value
- const uint32x4x4_t mask_lt0 =
- {
-#ifdef __aarch64__
- vcltzq_s32(result_shift.val[0]),
- vcltzq_s32(result_shift.val[1]),
- vcltzq_s32(result_shift.val[2]),
- vcltzq_s32(result_shift.val[3]),
-#else //__aarch64__
- vcltq_s32(result_shift.val[0], vdupq_n_s32(0)),
- vcltq_s32(result_shift.val[1], vdupq_n_s32(0)),
- vcltq_s32(result_shift.val[2], vdupq_n_s32(0)),
- vcltq_s32(result_shift.val[3], vdupq_n_s32(0)),
-#endif //__aarch64__
- };
-
- in_s32.val[0] = vbslq_s32(mask_lt0.val[0], res_shift_lt0.val[0], res_shift_gt0.val[0]);
- in_s32.val[1] = vbslq_s32(mask_lt0.val[1], res_shift_lt0.val[1], res_shift_gt0.val[1]);
- in_s32.val[2] = vbslq_s32(mask_lt0.val[2], res_shift_lt0.val[2], res_shift_gt0.val[2]);
- in_s32.val[3] = vbslq_s32(mask_lt0.val[3], res_shift_lt0.val[3], res_shift_gt0.val[3]);
-
- // Add the offset terms
- in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
- in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
- in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
- in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
-
- // Convert S32 to S16
- const int16x8x2_t in_s16 =
- {
- {
- vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
- vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
- }
- };
-
- // Convert S16 to S8
- int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
-
- if(is_bounded_relu)
- {
- out_s8 = vmaxq_s8(out_s8, min_s8);
- out_s8 = vminq_s8(out_s8, max_s8);
- }
-
- return out_s8;
-}
-
-/** Performs final quantization step on single element
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param[in] in_value Input to be quantized.
- * @param[in] result_fixedpoint_multiplier Result multiplier parameter
- * @param[in] result_shift Result shift parameter
- * @param[in] result_offset_after_shift_s32 Result offset parameter
- * @param[in] min_u8 Relu lower bound
- * @param[in] max_u8 Relu upper bound
- *
- * @return Quantized value
- */
-template <bool is_bounded_relu>
-inline uint8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
- int32_t result_shift, int32_t result_offset_after_shift_s32,
- uint8_t min_u8, uint8_t max_u8)
-{
- int32x4_t in_s32 = vdupq_n_s32(in_value);
-
- if(result_shift < 0)
- {
- in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
- }
- else
- {
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
- // Shift value by result_shift_s32
- in_value = rounding_divide_by_pow2(in_value, result_shift);
- }
-
- // Add the offset term
- in_value += result_offset_after_shift_s32;
-
- // Bound the result
- uint8_t out_u8 = static_cast<uint8_t>(std::max<int32_t>(0, std::min<int32_t>(255, in_value)));
- if(is_bounded_relu)
- {
- out_u8 = static_cast<uint8_t>(std::max(min_u8, std::min(max_u8, out_u8)));
- }
-
- return out_u8;
-}
-
-/** Performs final quantization step on single element
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param[in] in_value Input to be quantized.
- * @param[in] result_fixedpoint_multiplier Result multiplier parameter
- * @param[in] result_shift Result shift parameter
- * @param[in] result_offset_after_shift_s32 Result offset parameter
- * @param[in] min_s8 Relu lower bound
- * @param[in] max_s8 Relu upper bound
- *
- * @return Quantized value
- */
-template <bool is_bounded_relu>
-inline int8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
- int32_t result_shift, int32_t result_offset_after_shift_s32,
- int8_t min_s8, int8_t max_s8)
-{
- int32x4_t in_s32 = vdupq_n_s32(in_value);
-
- if(result_shift < 0)
- {
- in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
- }
- else
- {
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
-
- // Shift value by result_shift_s32
- in_value = rounding_divide_by_pow2(in_value, result_shift);
- }
-
- // Add the offset term
- in_value += result_offset_after_shift_s32;
-
- // Bound the result
- int8_t out_s8 = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
- if(is_bounded_relu)
- {
- out_s8 = static_cast<int8_t>(std::max(min_s8, std::min(max_s8, out_s8)));
- }
-
- return out_s8;
-}
-
-/** Dequantize a neon vector holding 8 quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x2_t vdequantize(const uint8x8_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const int32x4_t voffset = vdupq_n_s32(offset);
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x2_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(qv)))), voffset)), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize a neon vector holding 8 singed quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x2_t vdequantize(const int8x8_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const int32x4_t voffset = vdupq_n_s32(offset);
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x2_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(qv))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(qv))), voffset)), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize a neon vector holding 16 quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const uint8x16_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const int32x4_t voffset = vdupq_n_s32(offset);
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize a neon vector holding 16 signed quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const int8x16_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const int32x4_t voffset = vdupq_n_s32(offset);
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize following an asymmetric quantization scheme a neon vector holding 16 quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] scale Quantization scaling factor.
- * @param[in] offset Zero quantization offset.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const uint8x16_t &qv, float scale, int32_t offset)
-{
- const int32x4_t voffset = vdupq_n_s32(offset);
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize a vector of 16 values stored as signed asymmetric.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] scale Quantization scaling factor.
- * @param[in] offset Zero quantization offset.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale, int32_t offset)
-{
- const int32x4_t voffset = vdupq_n_s32(offset);
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize following symmetric quantization scheme a neon vector holding 16 quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] vscale Vector containing quantization scaling factors.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const int8x16_t &qv, const float32x4x4_t vscale)
-{
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[0]),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[1]),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[2]),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[3]),
- }
- };
- return vdequantized_input;
-}
-
-/** Dequantize following a symmetric quantization scheme a neon vector holding 16 quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] scale Quantization scaling factor.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale)
-{
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Quantize a neon vector holding 8 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return A neon vector holding the quantized values
- */
-inline uint8x8_t vquantize(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const float32x4_t voffset = vdupq_n_f32(offset);
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
-#endif //__aarch64__
- }
- };
- return vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
-}
-
-/** Quantize a neon vector holding 8 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return A neon vector holding the singed quantized values
- */
-inline int8x8_t vquantize_signed(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const float32x4_t voffset = vdupq_n_f32(offset);
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
-#endif //__aarch64__
- }
- };
- return vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
-}
-
-/** Quantize a neon vector holding 16 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return A neon vector holding the quantized values
- */
-inline uint8x16_t vquantize(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const float32x4_t voffset = vdupq_n_f32(offset);
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
-#endif //__aarch64__
- }
- };
- const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
- const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
- return vcombine_u8(pa, pb);
-}
-
-/** Signed quantize a neon vector holding 16 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return A neon vector holding the quantized values
- */
-inline int8x16_t vquantize_signed(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const float32x4_t voffset = vdupq_n_f32(offset);
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
-#endif //__aarch64__
- }
- };
- const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
- const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
- return vcombine_s8(pa, pb);
-}
-
-/** Quantize to QASYMM16 a neon vector holding 16 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return A neon vector holding the quantized values
- */
-inline uint16x8x2_t vquantize_qasymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const int offset = qi.offset;
- const float32x4_t voffset = vdupq_n_f32(offset);
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
- vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
- vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
-#endif //__aarch64__
- }
- };
- const uint16x8_t pa = vcombine_u16(vqmovun_s32(rf.val[0]), vqmovun_s32(rf.val[1]));
- const uint16x8_t pb = vcombine_u16(vqmovun_s32(rf.val[2]), vqmovun_s32(rf.val[3]));
- return { pa, pb };
-}
-} // namespace arm_compute
-#include "arm_compute/core/NEON/NEAsymm.inl"
-#endif // ARM_COMPUTE_NEASYMM_H