aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/neon_gemm_qasymm8.cpp260
1 files changed, 260 insertions, 0 deletions
diff --git a/examples/neon_gemm_qasymm8.cpp b/examples/neon_gemm_qasymm8.cpp
new file mode 100644
index 0000000000..f028e004c2
--- /dev/null
+++ b/examples/neon_gemm_qasymm8.cpp
@@ -0,0 +1,260 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/WindowIterator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/NEON/NEFunctions.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "utils/Utils.h"
+#include "support/ToolchainSupport.h"
+
+#include <cstdlib>
+
+using namespace arm_compute;
+using namespace utils;
+
+// Find min and max value in a float array
+void find_min_max(int size, const float *data, float *min, float *max)
+{
+ *min = *max = data[0];
+ for(int i = 0; i < size; i++)
+ {
+ const float val = data[i];
+ *min = std::min(*min, val);
+ *max = std::max(*max, val);
+ }
+}
+
+// Return reasonable quantisation parameters to use for an array of floats
+// based on min and max values
+QuantizationInfo choose_quantization_params(float min, float max)
+{
+ // Extend the [min,max] interval to contain 0 so we can represent it exactly
+ min = std::min(min, 0.f);
+ max = std::max(max, 0.f);
+
+ // Set the quantized min and max in float values
+ const float qmin = 0;
+ const float qmax = 255;
+
+ // Determine the scale
+ const float scale = (max - min) / (qmax - qmin);
+
+ // Determine the zero-point; using affine equation val = (qval-zerop) * scale
+ const float zero_point_real = qmin - min / scale;
+
+ // But we need to nudge the zero_point to an integer (exact quantized value)
+ std::uint8_t zero_point_nudged = 0;
+ if(zero_point_real < qmin)
+ {
+ zero_point_nudged = qmin;
+ }
+ else if(zero_point_real > qmax)
+ {
+ zero_point_nudged = qmax;
+ }
+ else
+ {
+ zero_point_nudged = static_cast<std::uint8_t>(support::cpp11::round(zero_point_real));
+ }
+
+ QuantizationInfo qinfo = QuantizationInfo(scale, zero_point_nudged);
+ return qinfo;
+}
+
+void quantize_values(int size, qasymm8_t *output, float *input, const QuantizationInfo qinfo)
+{
+ for(int i = 0; i < size; i++)
+ {
+ output[i] = quantize_qasymm8(input[i], qinfo);
+ }
+ std::cout << "\n";
+}
+
+int main(int argc, char **argv)
+{
+ Tensor src1;
+ Tensor src2;
+ Tensor dst0;
+ Tensor q_src1;
+ Tensor q_src2;
+ Tensor q_dst0;
+ Tensor q_res;
+ Tensor q_res_output;
+ size_t M = 4;
+ size_t N = 4;
+ size_t K = 4;
+ bool default_input = true;
+
+ // Parse args
+ if(argc < 3) /* case default matrix sizes */
+ {
+ // Print help
+ std::cout << "Usage: ./build/neon_gemm_qasymm8 M N K\n";
+ std::cout << "Too few or no inputs provided. Using default M=4, N=4, K=4\n\n";
+ }
+ else /* case M N K arguments provided */
+ {
+ M = strtol(argv[1], nullptr, 10);
+ N = strtol(argv[2], nullptr, 10);
+ K = strtol(argv[3], nullptr, 10);
+ default_input = false;
+ }
+
+ /*** Floating point matrix multiplication ***/
+
+ // Initialise input matrices
+ NEGEMM fgemm{};
+
+ src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::F32));
+ src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::F32));
+ dst0.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));
+ fgemm.configure(&src1, &src2, nullptr, &dst0, 1, 0);
+
+ // Allocate matrices
+ src1.allocator()->allocate();
+ src2.allocator()->allocate();
+ dst0.allocator()->allocate();
+
+ // Fill in tensors, by default fill in with known data - for easy testing
+ auto *src1_ptr = reinterpret_cast<float *>(src1.buffer());
+ auto *src2_ptr = reinterpret_cast<float *>(src2.buffer());
+ auto *dst0_ptr = reinterpret_cast<float *>(dst0.buffer());
+
+ // Fill in: one is the identity matrix, other is sequential values
+ // src1: Identity matrix
+ for(size_t i = 0; i < M * K; i++) {
+ src1_ptr[i] = 0;
+ }
+ for(size_t i = 0; i < M; i++) {
+ src1_ptr[i * K + i] = 1.0f;
+ }
+
+ // src2: Sequential values matrix
+ for(size_t i = 0; i < K * N; i++) {
+ src2_ptr[i] = i * 1.123f;
+ }
+
+ // Otherwise if M, N, K is given, fill in with random values
+ if(!default_input)
+ {
+ fill_random_tensor(src1, 0.f, 1.f);
+ fill_random_tensor(src2, 0.f, 1.f);
+ }
+
+ // Run single precision gemm and print result
+ fgemm.run();
+
+#if ARM_COMPUTE_DEBUG_ENABLED
+ std::cout << "Result matrix:\n";
+ src1.print(std::cout);
+ src2.print(std::cout);
+ dst0.print(std::cout);
+#endif // ARM_COMPUTE_DEBUG_ENABLED
+
+ /*** Quantised asymmetric 8bit matrix multiplication ***/
+
+ // Start by finding the quantisation parameters for each set of values
+ float src1_min;
+ float src1_max;
+ float src2_min;
+ float src2_max;
+ float dst0_min;
+ float dst0_max;
+
+ find_min_max(M * K, src1_ptr, &src1_min, &src1_max);
+ find_min_max(K * N, src2_ptr, &src2_min, &src2_max);
+ find_min_max(M * N, dst0_ptr, &dst0_min, &dst0_max);
+
+ const QuantizationInfo src1_qinfo = choose_quantization_params(src1_min, src1_max);
+ const QuantizationInfo src2_qinfo = choose_quantization_params(src2_min, src2_max);
+ const QuantizationInfo dst0_qinfo = choose_quantization_params(dst0_min, dst0_max);
+
+ std::cout << "Matrix 1: min=" << src1_min << ", max=" << src1_max << ", ";
+ std::cout << "QuantisationInfo(" << src1_qinfo.scale()[0] << ", " << src1_qinfo.offset()[0] << ")\n";
+ std::cout << "Matrix 2: min=" << src2_min << ", max=" << src2_max << ", ";
+ std::cout << "QuantisationInfo(" << src2_qinfo.scale()[0] << ", " << src2_qinfo.offset()[0] << ")\n";
+ std::cout << "Result : min=" << dst0_min << ", max=" << dst0_max << ", ";
+ std::cout << "QuantisationInfo(" << dst0_qinfo.scale()[0] << ", " << dst0_qinfo.offset()[0] << ")\n";
+
+ // We now have the quantisation info and can configure the quantised tensors
+ q_src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::QASYMM8, src1_qinfo));
+ q_src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::QASYMM8, src2_qinfo));
+ q_dst0.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::QASYMM8, dst0_qinfo));
+
+ // In this approach we use the QuantizationLayer construct to perform quantization
+ NEQuantizationLayer q1;
+ NEQuantizationLayer q2;
+ NEQuantizationLayer q3;
+ q1.configure(&src1, &q_src1);
+ q2.configure(&src2, &q_src2);
+ q3.configure(&dst0, &q_dst0);
+
+ // Configure low precision gemm and initialise result tensor (pre-output)
+ NEGEMMLowpMatrixMultiplyCore qgemm;
+ q_res.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::S32));
+ qgemm.configure(&q_src1, &q_src2, nullptr, &q_res);
+
+ // Configure output stage after computing shift and multiplier parameters
+ NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint gemmlowp_output_stage;
+ int output_multiplier;
+ int output_shift;
+ float multiplier = (src1_qinfo.uniform().scale * src2_qinfo.uniform().scale) / dst0_qinfo.uniform().scale;
+ quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
+ std::cout << "(q_multiplier, q_shift) = (" << output_multiplier << ", " << output_shift << ")\n\n";
+ gemmlowp_output_stage.configure(&q_res, nullptr, &q_res_output, output_multiplier, output_shift, dst0_qinfo.uniform().offset);
+
+ // Allocate all tensors
+ q_src1.allocator()->allocate();
+ q_src2.allocator()->allocate();
+ q_dst0.allocator()->allocate();
+ q_res.allocator()->allocate();
+ q_res_output.allocator()->allocate();
+
+ // Run quantization layers (quantizes values of each tensor)
+ q1.run();
+ q2.run();
+ q3.run();
+ // Run low precision matrix multiply kernel
+ qgemm.run();
+ // Run output stage kernel
+ gemmlowp_output_stage.run();
+ std::cout << "Done\n";
+
+#if ARM_COMPUTE_DEBUG_ENABLED
+ // Print quantized source matrices
+ q_src1.print(std::cout);
+ q_src2.print(std::cout);
+ // Print result matrix in int32 form - before output stage processing
+ std::cout << "Lowp GEMM output (int32):\n";
+ q_res.print(std::cout);
+ // Print QASYMM8 (quantized) matrix
+ std::cout << "Output pipeline result matrix:\n";
+ q_res_output.print(std::cout);
+
+ // Expected result
+ std::cout << "Expected result:\n";
+ q_dst0.print(std::cout);
+#endif // ARM_COMPUTE_DEBUG_ENABLED
+}