aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/cs_shaders
diff options
context:
space:
mode:
authorFrank Lei <frank.lei@arm.com>2017-12-05 10:43:33 +0800
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:42:17 +0000
commitb9d38ee6378f3035f8dbad442223d3d9e2f3dc4f (patch)
tree89a4b81430100a4a91902d5987ae42edc438012c /src/core/GLES_COMPUTE/cs_shaders
parent397d58aa40b02a26923c34d8cd4ba274eac45963 (diff)
downloadComputeLibrary-b9d38ee6378f3035f8dbad442223d3d9e2f3dc4f.tar.gz
APPBROWSER-312 Fully connected performance optimization
Change-Id: Ie93fd630ebbad7b6ca8812cb5044b3f1908b45fd Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/111830 Reviewed-by: Stephen Li <stephen.li@arm.com> Tested-by: BSG Visual Compute Jenkins server to access repositories on http://mpd-gerrit.cambridge.arm.com <bsgcomp@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'src/core/GLES_COMPUTE/cs_shaders')
-rw-r--r--src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs67
-rw-r--r--[-rwxr-xr-x]src/core/GLES_COMPUTE/cs_shaders/gemm.cs458
-rwxr-xr-xsrc/core/GLES_COMPUTE/cs_shaders/transpose.cs96
3 files changed, 602 insertions, 19 deletions
diff --git a/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs b/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
index 1a0c9f1d30..87a109adc0 100644
--- a/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
@@ -25,14 +25,6 @@
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers.h"
-#ifdef DATA_TYPE_FP16
-BUFFER_DECLARATION(src, 1, uint, readonly);
-BUFFER_DECLARATION(dst, 2, uint, restrict);
-#else // DATA_TYPE_FP16
-BUFFER_DECLARATION(src, 1, float, readonly);
-BUFFER_DECLARATION(dst, 2, float, restrict);
-#endif // DATA_TYPE_FP16
-
layout(std140) uniform shader_params
{
#ifdef IM2COL_GENERIC
@@ -58,10 +50,21 @@ layout(std140) uniform shader_params
};
#ifdef DATA_TYPE_FP16
+#if defined(IM2COL_REDUCED_8X)
+BUFFER_DECLARATION(src, 1, uvec4, readonly);
+BUFFER_DECLARATION(dst, 2, uvec4, restrict);
+#elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */
+BUFFER_DECLARATION(src, 1, uvec2, readonly);
+BUFFER_DECLARATION(dst, 2, uvec2, restrict);
+#else /* IM2COL_REDUCED_8X */
+BUFFER_DECLARATION(src, 1, uint, readonly);
+BUFFER_DECLARATION(dst, 2, uint, restrict);
+#endif /* IM2COL_REDUCED_8X */
precision mediump float;
#ifdef IM2COL_REDUCED
+#if defined(IM2COL_REDUCED_GENERIC)
/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
@@ -142,9 +145,55 @@ void main(void)
}
#endif // HAS_BIAS
}
-#endif // IM2COL_REDUCED
+#else /* IM2COL_REDUCED_GENERIC */
+/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
+ *
+ * @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
+ * @note In case biases will be added in late stage, "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] width The width of the input tensor
+ * @param[in] height The height of the input tensor
+ */
+void main(void)
+{
+ uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT_FP16(src);
+ Vector dst = CONVERT_TO_VECTOR_STRUCT_NO_STEP_FP16(dst);
+#if defined(IM2COL_REDUCED_8X)
+ uint tmp_out_offset = dst.current_offset + ((pos.x * uint(8) + pos.y * width + pos.z * uint(IMAGE_SIZE)) * dst.stride_x);
+ uvec4 tmp;
+ LOAD1(tmp, src, src.current_offset >> uint(4));
+ STORE1(dst, tmp_out_offset >> uint(4), tmp);
+#elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */
+ uint tmp_out_offset = dst.current_offset + ((pos.x * uint(4) + pos.y * width + pos.z * uint(IMAGE_SIZE)) * dst.stride_x);
+ uvec2 tmp;
+ LOAD1(tmp, src, src.current_offset >> uint(3));
+ STORE1(dst, tmp_out_offset >> uint(3), tmp);
+#else /* IM2COL_REDUCED_8X */
+ uint tmp_out_offset = dst.current_offset + ((pos.x * uint(2) + pos.y * width + pos.z * uint(IMAGE_SIZE)) * dst.stride_x);
+ uint tmp;
+ LOAD1(tmp, src, src.current_offset >> uint(2));
+ STORE1(dst, tmp_out_offset >> uint(2), tmp);
+#endif /* IM2COL_REDUCED_8X */
+}
+#endif /* IM2COL_REDUCED_GENERIC */
+#endif // IM2COL_REDUCED
#elif defined(DATA_TYPE_FP32)
+BUFFER_DECLARATION(src, 1, float, readonly);
+BUFFER_DECLARATION(dst, 2, float, restrict);
#ifdef IM2COL_GENERIC
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
index ffa0ebb2af..3ed27d5f00 100755..100644
--- a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
@@ -475,6 +475,7 @@ void main(void)
#elif defined(DATA_TYPE_FP16)
precision mediump float;
#ifdef GEMM_MM_FLOATING_POINT
+#if defined(MM_PROCESS_4X)
BUFFER_DECLARATION(src0, 1, uint, readonly);
BUFFER_DECLARATION(src1, 2, uvec2, readonly);
BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
@@ -526,14 +527,41 @@ void main()
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 acc1 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 acc2 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 acc3 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- for(; src0.current_offset < (end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
+ for(; int(src0.current_offset) < int(end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
{
- uint packed_a0;
+ uint packed_a;
vec2 a0;
- GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
- a0 = vec2(unpackHalf2x16(packed_a0));
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a0 = vec2(unpackHalf2x16(packed_a));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec2 a1;
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
+ a1 = vec2(unpackHalf2x16(packed_a));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec2 a2;
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
+ a2 = vec2(unpackHalf2x16(packed_a));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec2 a3;
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
+ a3 = vec2(unpackHalf2x16(packed_a));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b0;
uvec2 packed_b1;
@@ -548,6 +576,18 @@ void main()
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b0 * vec4(a1.x);
+ acc1 += b1 * vec4(a1.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b0 * vec4(a2.x);
+ acc2 += b1 * vec4(a2.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b0 * vec4(a3.x);
+ acc3 += b1 * vec4(a3.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y)
@@ -557,6 +597,24 @@ void main()
GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
a0 = vec2(unpackHalf2x16(packed_a0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec2 a1;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 1);
+ a1 = vec2(unpackHalf2x16(packed_a0));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec2 a2;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 2);
+ a2 = vec2(unpackHalf2x16(packed_a0));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec2 a3;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 3);
+ a3 = vec2(unpackHalf2x16(packed_a0));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b0;
vec4 b0;
@@ -566,6 +624,15 @@ void main()
b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
acc0 += b0 * (a0.x);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b0 * (a1.x);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b0 * (a2.x);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b0 * (a3.x);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/* Multiply by the weight of vector-matrix product */
@@ -574,10 +641,340 @@ void main()
uvec2 packed_d;
packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
-#endif /* GEMM_MM_FLOATING_POINT */
+#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */
+BUFFER_DECLARATION(src0, 1, uvec4, readonly);
+BUFFER_DECLARATION(src1, 2, uvec2, readonly);
+BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
+ /* Compute the address for the vector A and matrix B */
+ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+
+ /* Compute end row address for matrix A */
+ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+
+ /* Reset accumulators */
+ vec4 acc0 = vec4(0.0f);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 acc1 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 acc2 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 acc3 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a0[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 a1[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
+ a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 a2[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
+ a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 a3[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
+ a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ uvec2 packed_b;
+ vec4 b;
+
+ for(int i = 0; i < 8; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+
+ acc0 += b * vec4(a0[j][k]);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b * vec4(a1[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b * vec4(a2[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b * vec4(a3[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+ }
+
+ for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a0[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 a1[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
+ a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 a2[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
+ a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 a3[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
+ a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ uvec2 packed_b;
+ vec4 b;
+
+ int leftover = COLS_A % 8;
+
+ for(int i = 0; i < leftover; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+
+ acc0 += b * vec4(a0[j][k]);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b * vec4(a1[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b * vec4(a2[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b * vec4(a3[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+ }
+
+ /* Multiply by the weight of vector-matrix product */
+ acc0 = acc0 * vec4(ALPHA);
+
+ uvec2 packed_d;
+ packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+}
+#elif defined(MM_PROCESS_8X) /* PROCESS_4X */
+BUFFER_DECLARATION(src0, 1, uvec4, readonly);
+BUFFER_DECLARATION(src1, 2, uvec4, readonly);
+BUFFER_DECLARATION(dst, 3, uvec4, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
+ /* Compute the address for the vector A and matrix B */
+ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+
+ /* Compute end row address for matrix A */
+ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+
+ /* Reset accumulators */
+ vec4 acc[2];
+
+ acc[0] = vec4(0.0f);
+ acc[1] = vec4(0.0f);
+
+ for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+ uvec4 packed_b;
+ vec4 b[2];
+
+ for(int i = 0; i < 8; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+ b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
+
+ acc[0] += b[0] * vec4(a[j][k]);
+ acc[1] += b[1] * vec4(a[j][k]);
+ }
+ }
+
+ for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+ uvec4 packed_b;
+ vec4 b[2];
+
+ int leftover = COLS_A % 8;
+
+ for(int i = 0; i < leftover; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+ b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
+
+ acc[0] += b[0] * vec4(a[j][k]);
+ acc[1] += b[1] * vec4(a[j][k]);
+ }
+ }
+
+ /* Multiply by the weight of vector-matrix product */
+ acc[0] = acc[0] * vec4(ALPHA);
+ acc[1] = acc[1] * vec4(ALPHA);
+
+ uvec4 packed_d;
+ packed_d = uvec4(packHalf2x16(acc[0].xy), packHalf2x16(acc[0].zw), packHalf2x16(acc[1].xy), packHalf2x16(acc[1].zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+}
+#endif /* PROCESS_4X */
+#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_ACCUMULATE_BIASES
+#if defined(ACCUM_PROCESS_4X)
BUFFER_DECLARATION(accum, 1, uvec2, restrict);
BUFFER_DECLARATION(biases, 2, uvec2, readonly);
@@ -617,7 +1014,54 @@ void main(void)
packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw));
GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
}
-#endif /* GEMM_ACCUMULATE_BIASES */
-#else /* DATA_TYPE_FP32 */
+#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
+BUFFER_DECLARATION(accum, 1, uvec4, restrict);
+BUFFER_DECLARATION(biases, 2, uvec4, readonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(accum);
+ VECTOR_PARAM_DECLARATION(biases);
+};
+
+/** This kernel accumulates each row with the biases vector
+ *
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
+ * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
+ * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
+ * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
+ * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+void main(void)
+{
+ Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
+ Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
+
+ vec4 u[2];
+ vec4 v[2];
+ uvec4 packed_s[2];
+ GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
+ GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
+
+ u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
+ u[1] = vec4(unpackHalf2x16(packed_s[0].z), unpackHalf2x16(packed_s[0].w));
+
+ v[0] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
+ v[1] = vec4(unpackHalf2x16(packed_s[1].z), unpackHalf2x16(packed_s[1].w));
+
+ vec4 r[2];
+ r[0] = u[0] + v[0];
+ r[1] = u[1] + v[1];
+ packed_s[0] = uvec4(packHalf2x16(r[0].xy), packHalf2x16(r[0].zw), packHalf2x16(r[1].xy), packHalf2x16(r[1].zw));
+ GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
+}
+#endif /* ACCUM_PROCESS_4X */
+#endif /* GEMM_ACCUMULATE_BIASES */
+#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
diff --git a/src/core/GLES_COMPUTE/cs_shaders/transpose.cs b/src/core/GLES_COMPUTE/cs_shaders/transpose.cs
index 6d020fe70d..c251d95292 100755
--- a/src/core/GLES_COMPUTE/cs_shaders/transpose.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/transpose.cs
@@ -109,15 +109,16 @@ void main(void)
#elif defined(DATA_TYPE_FP16)
precision mediump float;
-BUFFER_DECLARATION(src, 1, uvec2, readonly);
-BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
-
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src);
IMAGE_PARAM_DECLARATION(dst);
};
+#if defined(TRANSPOSE_4X4)
+BUFFER_DECLARATION(src, 1, uvec2, readonly);
+BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
+
/** This OpenGL ES kernel computes the matrix transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
@@ -184,4 +185,93 @@ void main(void)
GC_STORE1(packed_s[2], dst, uint((dst_offset_in_bytes + uint(2) * dst_stride_y) >> 3));
GC_STORE1(packed_s[3], dst, uint((dst_offset_in_bytes + uint(3) * dst_stride_y) >> 3));
}
+#elif defined(TRANSPOSE_8X8) /* TRANSPOSE_4X4 */
+BUFFER_DECLARATION(src, 1, uvec4, readonly);
+BUFFER_DECLARATION(dst, 2, uvec4, writeonly);
+
+#define SWAP_ROW(u0, l0) \
+ { \
+ tmp_swap = u0; \
+ u0 = l0; \
+ l0 = tmp_swap; \
+ }
+
+#define SWAP_4x4(u0, u1, u2, u3, l0, l1, l2, l3) \
+ { \
+ vec4 tmp_swap; \
+ SWAP_ROW(u0, l0); \
+ SWAP_ROW(u1, l1); \
+ SWAP_ROW(u2, l2); \
+ SWAP_ROW(u3, l3); \
+ }
+
+#define TRANSPOSE_4x4(u0, u1, u2, u3) \
+ { \
+ vec4 tmp; \
+ tmp.xyz = u0.yzw; \
+ u0.y = u1.x; \
+ u0.z = u2.x; \
+ u0.w = u3.x; \
+ u1.x = tmp.x; \
+ u2.x = tmp.y; \
+ u3.x = tmp.z; \
+ tmp.xy = u1.zw; \
+ u1.z = u2.y; \
+ u1.w = u3.y; \
+ u2.y = tmp.x; \
+ u3.y = tmp.y; \
+ tmp.x = u2.w; \
+ u2.w = u3.z; \
+ u3.z = tmp.x; \
+ }
+
+/** This OpenGL ES kernel computes the matrix transposition of input matrix
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types:F16
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main(void)
+{
+ // Compute source address
+ Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ vec4 u[8][2];
+
+ uvec4 packed_s[8];
+
+ for(int i = 0; i < 8; i++)
+ {
+ GC_LOAD1_2D_OFFSET(packed_s[i], src, 0, i);
+ u[i][0] = vec4(unpackHalf2x16(packed_s[i].x), unpackHalf2x16(packed_s[i].y));
+ u[i][1] = vec4(unpackHalf2x16(packed_s[i].z), unpackHalf2x16(packed_s[i].w));
+ }
+
+ // Transpose the block
+ TRANSPOSE_4x4(u[0][0], u[1][0], u[2][0], u[3][0]);
+ TRANSPOSE_4x4(u[0][1], u[1][1], u[2][1], u[3][1]);
+ TRANSPOSE_4x4(u[4][0], u[5][0], u[6][0], u[7][0]);
+ TRANSPOSE_4x4(u[4][1], u[5][1], u[6][1], u[7][1]);
+ SWAP_4x4(u[0][1], u[1][1], u[2][1], u[3][1], u[4][0], u[5][0], u[6][0], u[7][0]);
+
+ // Store the block at (y, x)
+ uint dst_offset_in_bytes = uint(16) * uint(gl_GlobalInvocationID.y) + uint(gl_GlobalInvocationID.x) * (dst_step_y) + (dst.offset_first_element_in_bytes);
+
+ for(int i = 0; i < 8; i++)
+ {
+ packed_s[i] = uvec4(packHalf2x16(u[i][0].xy), packHalf2x16(u[i][0].zw), packHalf2x16(u[i][1].xy), packHalf2x16(u[i][1].zw));
+ GC_STORE1(packed_s[i], dst, uint((dst_offset_in_bytes + uint(i) * dst_stride_y) >> 4));
+ }
+}
+#endif /* TRANSPOSE_4X4 */
#endif /*ARM_COMPUTE_ENABLE_FP16*/