aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFrank Lei <frank.lei@arm.com>2017-12-05 10:43:33 +0800
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:42:17 +0000
commitb9d38ee6378f3035f8dbad442223d3d9e2f3dc4f (patch)
tree89a4b81430100a4a91902d5987ae42edc438012c
parent397d58aa40b02a26923c34d8cd4ba274eac45963 (diff)
downloadComputeLibrary-b9d38ee6378f3035f8dbad442223d3d9e2f3dc4f.tar.gz
APPBROWSER-312 Fully connected performance optimization
Change-Id: Ie93fd630ebbad7b6ca8812cb5044b3f1908b45fd Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/111830 Reviewed-by: Stephen Li <stephen.li@arm.com> Tested-by: BSG Visual Compute Jenkins server to access repositories on http://mpd-gerrit.cambridge.arm.com <bsgcomp@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
-rw-r--r--arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.h1
-rw-r--r--src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs67
-rw-r--r--[-rwxr-xr-x]src/core/GLES_COMPUTE/cs_shaders/gemm.cs458
-rwxr-xr-xsrc/core/GLES_COMPUTE/cs_shaders/transpose.cs96
-rw-r--r--src/core/GLES_COMPUTE/kernels/GCDirectConvolutionLayerKernel.cpp19
-rw-r--r--src/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.cpp46
-rw-r--r--src/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.cpp30
-rw-r--r--src/core/GLES_COMPUTE/kernels/GCIm2ColKernel.cpp33
-rw-r--r--src/core/GLES_COMPUTE/kernels/GCTransposeKernel.cpp32
-rw-r--r--tests/benchmark/fixtures/FullyConnectedLayerFixture.h13
10 files changed, 758 insertions, 37 deletions
diff --git a/arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.h b/arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.h
index 20f28cbb65..77a52b2aaa 100644
--- a/arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.h
+++ b/arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.h
@@ -57,6 +57,7 @@ public:
private:
IGCTensor *_accum;
const IGCTensor *_biases;
+ gles::NDRange _lws;
};
}
diff --git a/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs b/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
index 1a0c9f1d30..87a109adc0 100644
--- a/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
@@ -25,14 +25,6 @@
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers.h"
-#ifdef DATA_TYPE_FP16
-BUFFER_DECLARATION(src, 1, uint, readonly);
-BUFFER_DECLARATION(dst, 2, uint, restrict);
-#else // DATA_TYPE_FP16
-BUFFER_DECLARATION(src, 1, float, readonly);
-BUFFER_DECLARATION(dst, 2, float, restrict);
-#endif // DATA_TYPE_FP16
-
layout(std140) uniform shader_params
{
#ifdef IM2COL_GENERIC
@@ -58,10 +50,21 @@ layout(std140) uniform shader_params
};
#ifdef DATA_TYPE_FP16
+#if defined(IM2COL_REDUCED_8X)
+BUFFER_DECLARATION(src, 1, uvec4, readonly);
+BUFFER_DECLARATION(dst, 2, uvec4, restrict);
+#elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */
+BUFFER_DECLARATION(src, 1, uvec2, readonly);
+BUFFER_DECLARATION(dst, 2, uvec2, restrict);
+#else /* IM2COL_REDUCED_8X */
+BUFFER_DECLARATION(src, 1, uint, readonly);
+BUFFER_DECLARATION(dst, 2, uint, restrict);
+#endif /* IM2COL_REDUCED_8X */
precision mediump float;
#ifdef IM2COL_REDUCED
+#if defined(IM2COL_REDUCED_GENERIC)
/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
@@ -142,9 +145,55 @@ void main(void)
}
#endif // HAS_BIAS
}
-#endif // IM2COL_REDUCED
+#else /* IM2COL_REDUCED_GENERIC */
+/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
+ *
+ * @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
+ * @note In case biases will be added in late stage, "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] width The width of the input tensor
+ * @param[in] height The height of the input tensor
+ */
+void main(void)
+{
+ uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT_FP16(src);
+ Vector dst = CONVERT_TO_VECTOR_STRUCT_NO_STEP_FP16(dst);
+#if defined(IM2COL_REDUCED_8X)
+ uint tmp_out_offset = dst.current_offset + ((pos.x * uint(8) + pos.y * width + pos.z * uint(IMAGE_SIZE)) * dst.stride_x);
+ uvec4 tmp;
+ LOAD1(tmp, src, src.current_offset >> uint(4));
+ STORE1(dst, tmp_out_offset >> uint(4), tmp);
+#elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */
+ uint tmp_out_offset = dst.current_offset + ((pos.x * uint(4) + pos.y * width + pos.z * uint(IMAGE_SIZE)) * dst.stride_x);
+ uvec2 tmp;
+ LOAD1(tmp, src, src.current_offset >> uint(3));
+ STORE1(dst, tmp_out_offset >> uint(3), tmp);
+#else /* IM2COL_REDUCED_8X */
+ uint tmp_out_offset = dst.current_offset + ((pos.x * uint(2) + pos.y * width + pos.z * uint(IMAGE_SIZE)) * dst.stride_x);
+ uint tmp;
+ LOAD1(tmp, src, src.current_offset >> uint(2));
+ STORE1(dst, tmp_out_offset >> uint(2), tmp);
+#endif /* IM2COL_REDUCED_8X */
+}
+#endif /* IM2COL_REDUCED_GENERIC */
+#endif // IM2COL_REDUCED
#elif defined(DATA_TYPE_FP32)
+BUFFER_DECLARATION(src, 1, float, readonly);
+BUFFER_DECLARATION(dst, 2, float, restrict);
#ifdef IM2COL_GENERIC
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
index ffa0ebb2af..3ed27d5f00 100755..100644
--- a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
@@ -475,6 +475,7 @@ void main(void)
#elif defined(DATA_TYPE_FP16)
precision mediump float;
#ifdef GEMM_MM_FLOATING_POINT
+#if defined(MM_PROCESS_4X)
BUFFER_DECLARATION(src0, 1, uint, readonly);
BUFFER_DECLARATION(src1, 2, uvec2, readonly);
BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
@@ -526,14 +527,41 @@ void main()
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 acc1 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 acc2 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 acc3 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- for(; src0.current_offset < (end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
+ for(; int(src0.current_offset) < int(end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
{
- uint packed_a0;
+ uint packed_a;
vec2 a0;
- GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
- a0 = vec2(unpackHalf2x16(packed_a0));
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a0 = vec2(unpackHalf2x16(packed_a));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec2 a1;
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
+ a1 = vec2(unpackHalf2x16(packed_a));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec2 a2;
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
+ a2 = vec2(unpackHalf2x16(packed_a));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec2 a3;
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
+ a3 = vec2(unpackHalf2x16(packed_a));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b0;
uvec2 packed_b1;
@@ -548,6 +576,18 @@ void main()
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b0 * vec4(a1.x);
+ acc1 += b1 * vec4(a1.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b0 * vec4(a2.x);
+ acc2 += b1 * vec4(a2.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b0 * vec4(a3.x);
+ acc3 += b1 * vec4(a3.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y)
@@ -557,6 +597,24 @@ void main()
GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
a0 = vec2(unpackHalf2x16(packed_a0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec2 a1;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 1);
+ a1 = vec2(unpackHalf2x16(packed_a0));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec2 a2;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 2);
+ a2 = vec2(unpackHalf2x16(packed_a0));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec2 a3;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 3);
+ a3 = vec2(unpackHalf2x16(packed_a0));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b0;
vec4 b0;
@@ -566,6 +624,15 @@ void main()
b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
acc0 += b0 * (a0.x);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b0 * (a1.x);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b0 * (a2.x);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b0 * (a3.x);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/* Multiply by the weight of vector-matrix product */
@@ -574,10 +641,340 @@ void main()
uvec2 packed_d;
packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
-#endif /* GEMM_MM_FLOATING_POINT */
+#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */
+BUFFER_DECLARATION(src0, 1, uvec4, readonly);
+BUFFER_DECLARATION(src1, 2, uvec2, readonly);
+BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
+ /* Compute the address for the vector A and matrix B */
+ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+
+ /* Compute end row address for matrix A */
+ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+
+ /* Reset accumulators */
+ vec4 acc0 = vec4(0.0f);
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 acc1 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 acc2 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 acc3 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a0[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 a1[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
+ a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 a2[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
+ a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 a3[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
+ a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ uvec2 packed_b;
+ vec4 b;
+
+ for(int i = 0; i < 8; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+
+ acc0 += b * vec4(a0[j][k]);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b * vec4(a1[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b * vec4(a2[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b * vec4(a3[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+ }
+
+ for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a0[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 a1[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
+ a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 a2[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
+ a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 a3[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
+ a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ uvec2 packed_b;
+ vec4 b;
+
+ int leftover = COLS_A % 8;
+
+ for(int i = 0; i < leftover; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+
+ acc0 += b * vec4(a0[j][k]);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b * vec4(a1[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b * vec4(a2[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b * vec4(a3[j][k]);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+ }
+
+ /* Multiply by the weight of vector-matrix product */
+ acc0 = acc0 * vec4(ALPHA);
+
+ uvec2 packed_d;
+ packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+}
+#elif defined(MM_PROCESS_8X) /* PROCESS_4X */
+BUFFER_DECLARATION(src0, 1, uvec4, readonly);
+BUFFER_DECLARATION(src1, 2, uvec4, readonly);
+BUFFER_DECLARATION(dst, 3, uvec4, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
+ /* Compute the address for the vector A and matrix B */
+ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+
+ /* Compute end row address for matrix A */
+ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+
+ /* Reset accumulators */
+ vec4 acc[2];
+
+ acc[0] = vec4(0.0f);
+ acc[1] = vec4(0.0f);
+
+ for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+ uvec4 packed_b;
+ vec4 b[2];
+
+ for(int i = 0; i < 8; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+ b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
+
+ acc[0] += b[0] * vec4(a[j][k]);
+ acc[1] += b[1] * vec4(a[j][k]);
+ }
+ }
+
+ for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
+ {
+ uvec4 packed_a;
+ vec4 a[2];
+
+ GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
+ a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
+ a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+
+ uvec4 packed_b;
+ vec4 b[2];
+
+ int leftover = COLS_A % 8;
+
+ for(int i = 0; i < leftover; i++)
+ {
+ int j = i >> 2;
+ int k = i % 4;
+
+ GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
+
+ b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+ b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
+
+ acc[0] += b[0] * vec4(a[j][k]);
+ acc[1] += b[1] * vec4(a[j][k]);
+ }
+ }
+
+ /* Multiply by the weight of vector-matrix product */
+ acc[0] = acc[0] * vec4(ALPHA);
+ acc[1] = acc[1] * vec4(ALPHA);
+
+ uvec4 packed_d;
+ packed_d = uvec4(packHalf2x16(acc[0].xy), packHalf2x16(acc[0].zw), packHalf2x16(acc[1].xy), packHalf2x16(acc[1].zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+}
+#endif /* PROCESS_4X */
+#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_ACCUMULATE_BIASES
+#if defined(ACCUM_PROCESS_4X)
BUFFER_DECLARATION(accum, 1, uvec2, restrict);
BUFFER_DECLARATION(biases, 2, uvec2, readonly);
@@ -617,7 +1014,54 @@ void main(void)
packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw));
GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
}
-#endif /* GEMM_ACCUMULATE_BIASES */
-#else /* DATA_TYPE_FP32 */
+#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
+BUFFER_DECLARATION(accum, 1, uvec4, restrict);
+BUFFER_DECLARATION(biases, 2, uvec4, readonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(accum);
+ VECTOR_PARAM_DECLARATION(biases);
+};
+
+/** This kernel accumulates each row with the biases vector
+ *
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
+ * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
+ * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
+ * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
+ * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+void main(void)
+{
+ Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
+ Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
+
+ vec4 u[2];
+ vec4 v[2];
+ uvec4 packed_s[2];
+ GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
+ GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
+
+ u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
+ u[1] = vec4(unpackHalf2x16(packed_s[0].z), unpackHalf2x16(packed_s[0].w));
+
+ v[0] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
+ v[1] = vec4(unpackHalf2x16(packed_s[1].z), unpackHalf2x16(packed_s[1].w));
+
+ vec4 r[2];
+ r[0] = u[0] + v[0];
+ r[1] = u[1] + v[1];
+ packed_s[0] = uvec4(packHalf2x16(r[0].xy), packHalf2x16(r[0].zw), packHalf2x16(r[1].xy), packHalf2x16(r[1].zw));
+ GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
+}
+#endif /* ACCUM_PROCESS_4X */
+#endif /* GEMM_ACCUMULATE_BIASES */
+#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
diff --git a/src/core/GLES_COMPUTE/cs_shaders/transpose.cs b/src/core/GLES_COMPUTE/cs_shaders/transpose.cs
index 6d020fe70d..c251d95292 100755
--- a/src/core/GLES_COMPUTE/cs_shaders/transpose.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/transpose.cs
@@ -109,15 +109,16 @@ void main(void)
#elif defined(DATA_TYPE_FP16)
precision mediump float;
-BUFFER_DECLARATION(src, 1, uvec2, readonly);
-BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
-
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src);
IMAGE_PARAM_DECLARATION(dst);
};
+#if defined(TRANSPOSE_4X4)
+BUFFER_DECLARATION(src, 1, uvec2, readonly);
+BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
+
/** This OpenGL ES kernel computes the matrix transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
@@ -184,4 +185,93 @@ void main(void)
GC_STORE1(packed_s[2], dst, uint((dst_offset_in_bytes + uint(2) * dst_stride_y) >> 3));
GC_STORE1(packed_s[3], dst, uint((dst_offset_in_bytes + uint(3) * dst_stride_y) >> 3));
}
+#elif defined(TRANSPOSE_8X8) /* TRANSPOSE_4X4 */
+BUFFER_DECLARATION(src, 1, uvec4, readonly);
+BUFFER_DECLARATION(dst, 2, uvec4, writeonly);
+
+#define SWAP_ROW(u0, l0) \
+ { \
+ tmp_swap = u0; \
+ u0 = l0; \
+ l0 = tmp_swap; \
+ }
+
+#define SWAP_4x4(u0, u1, u2, u3, l0, l1, l2, l3) \
+ { \
+ vec4 tmp_swap; \
+ SWAP_ROW(u0, l0); \
+ SWAP_ROW(u1, l1); \
+ SWAP_ROW(u2, l2); \
+ SWAP_ROW(u3, l3); \
+ }
+
+#define TRANSPOSE_4x4(u0, u1, u2, u3) \
+ { \
+ vec4 tmp; \
+ tmp.xyz = u0.yzw; \
+ u0.y = u1.x; \
+ u0.z = u2.x; \
+ u0.w = u3.x; \
+ u1.x = tmp.x; \
+ u2.x = tmp.y; \
+ u3.x = tmp.z; \
+ tmp.xy = u1.zw; \
+ u1.z = u2.y; \
+ u1.w = u3.y; \
+ u2.y = tmp.x; \
+ u3.y = tmp.y; \
+ tmp.x = u2.w; \
+ u2.w = u3.z; \
+ u3.z = tmp.x; \
+ }
+
+/** This OpenGL ES kernel computes the matrix transposition of input matrix
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types:F16
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main(void)
+{
+ // Compute source address
+ Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ vec4 u[8][2];
+
+ uvec4 packed_s[8];
+
+ for(int i = 0; i < 8; i++)
+ {
+ GC_LOAD1_2D_OFFSET(packed_s[i], src, 0, i);
+ u[i][0] = vec4(unpackHalf2x16(packed_s[i].x), unpackHalf2x16(packed_s[i].y));
+ u[i][1] = vec4(unpackHalf2x16(packed_s[i].z), unpackHalf2x16(packed_s[i].w));
+ }
+
+ // Transpose the block
+ TRANSPOSE_4x4(u[0][0], u[1][0], u[2][0], u[3][0]);
+ TRANSPOSE_4x4(u[0][1], u[1][1], u[2][1], u[3][1]);
+ TRANSPOSE_4x4(u[4][0], u[5][0], u[6][0], u[7][0]);
+ TRANSPOSE_4x4(u[4][1], u[5][1], u[6][1], u[7][1]);
+ SWAP_4x4(u[0][1], u[1][1], u[2][1], u[3][1], u[4][0], u[5][0], u[6][0], u[7][0]);
+
+ // Store the block at (y, x)
+ uint dst_offset_in_bytes = uint(16) * uint(gl_GlobalInvocationID.y) + uint(gl_GlobalInvocationID.x) * (dst_step_y) + (dst.offset_first_element_in_bytes);
+
+ for(int i = 0; i < 8; i++)
+ {
+ packed_s[i] = uvec4(packHalf2x16(u[i][0].xy), packHalf2x16(u[i][0].zw), packHalf2x16(u[i][1].xy), packHalf2x16(u[i][1].zw));
+ GC_STORE1(packed_s[i], dst, uint((dst_offset_in_bytes + uint(i) * dst_stride_y) >> 4));
+ }
+}
+#endif /* TRANSPOSE_4X4 */
#endif /*ARM_COMPUTE_ENABLE_FP16*/
diff --git a/src/core/GLES_COMPUTE/kernels/GCDirectConvolutionLayerKernel.cpp b/src/core/GLES_COMPUTE/kernels/GCDirectConvolutionLayerKernel.cpp
index b032bc5668..a7d721d035 100644
--- a/src/core/GLES_COMPUTE/kernels/GCDirectConvolutionLayerKernel.cpp
+++ b/src/core/GLES_COMPUTE/kernels/GCDirectConvolutionLayerKernel.cpp
@@ -53,7 +53,6 @@ template <unsigned int kernel_size>
void GCDirectConvolutionLayerKernel<kernel_size>::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *bias, IGCTensor *output, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
- ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_ERROR_ON(weights->info()->dimension(2) != input->info()->dimension(2));
ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != weights->info()->dimension(1));
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
@@ -68,6 +67,24 @@ void GCDirectConvolutionLayerKernel<kernel_size>::configure(const IGCTensor *inp
ARM_COMPUTE_ERROR_ON(bias->info()->num_dimensions() > 1);
}
+ // Get convolved dimensions
+ unsigned int owidth = 0;
+ unsigned int oheight = 0;
+ std::tie(owidth, oheight) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_size, kernel_size, conv_info);
+
+ TensorShape output_shape = input->info()->tensor_shape();
+ output_shape.set(0, owidth);
+ output_shape.set(1, oheight);
+ output_shape.set(2, weights->info()->dimension(3));
+
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position());
+
+ ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
+ ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
+ ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
+ ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
+
_conv_stride_x = std::get<0>(conv_info.stride());
_conv_stride_y = std::get<1>(conv_info.stride());
_conv_pad_x = std::get<0>(conv_info.pad());
diff --git a/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.cpp b/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.cpp
index 8625d371e5..944585daff 100644
--- a/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.cpp
+++ b/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixAccumulateBiasesKernel.cpp
@@ -37,7 +37,7 @@
using namespace arm_compute;
GCGEMMMatrixAccumulateBiasesKernel::GCGEMMMatrixAccumulateBiasesKernel()
- : _accum(nullptr), _biases(nullptr)
+ : _accum(nullptr), _biases(nullptr), _lws(gles::NDRange(1U, 1U, 1U))
{
}
@@ -51,14 +51,23 @@ void GCGEMMMatrixAccumulateBiasesKernel::configure(IGCTensor *accum, const IGCTe
_accum = accum;
std::set<std::string> build_opts;
- build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1));
- build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
- build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
+ build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(_lws[0]));
+ build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(_lws[1]));
+ build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(_lws[2]));
// Create kernel
build_opts.emplace("#define GEMM_ACCUMULATE_BIASES");
+
+#define ACCUM_PROCESS_4X
+
+#if defined(ACCUM_PROCESS_4X)
+ build_opts.emplace("#define ACCUM_PROCESS_4X");
+#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
+ build_opts.emplace("#define ACCUM_PROCESS_8X");
+#endif /* ACCUM_PROCESS_4X */
std::string dt_name = (accum->info()->data_type() == DataType::F32) ? "DATA_TYPE_FP32" : "DATA_TYPE_FP16";
build_opts.emplace(("#define " + dt_name));
+
_kernel = GCKernelLibrary::get().create_kernel("gemm_accumulate_biases", build_opts);
// Configure kernel window
@@ -70,13 +79,21 @@ void GCGEMMMatrixAccumulateBiasesKernel::configure(IGCTensor *accum, const IGCTe
}
else if(_accum->info()->data_type() == DataType::F16)
{
+#if defined(ACCUM_PROCESS_4X)
num_elems_processed_per_iteration = 4;
+#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
+ num_elems_processed_per_iteration = 8;
+#endif /* ACCUM_PROCESS_4X */
}
- Window win = calculate_max_window(*_accum->info(), Steps(num_elems_processed_per_iteration));
+ const int accum_width = accum->info()->dimension(0);
+ const int accum_padding_right = ceil_to_multiple(accum_width, num_elems_processed_per_iteration * _lws[0]) - accum_width;
+ BorderSize border = BorderSize(0, accum_padding_right, 0, 0);
+
+ Window win = calculate_max_enlarged_window(*_accum->info(), Steps(num_elems_processed_per_iteration), border);
- AccessWindowStatic biases_access(biases->info(), 0, 0, ceil_to_multiple(biases->info()->dimension(0), num_elems_processed_per_iteration), biases->info()->dimension(1));
- AccessWindowHorizontal accum_access(_accum->info(), 0, num_elems_processed_per_iteration);
+ AccessWindowStatic biases_access(biases->info(), 0, 0, ceil_to_multiple(biases->info()->dimension(0), num_elems_processed_per_iteration * _lws[0]), biases->info()->dimension(1));
+ AccessWindowStatic accum_access(_accum->info(), 0, 0, accum_width + accum_padding_right, _accum->info()->dimension(1));
update_window_and_padding(win, biases_access, accum_access);
@@ -107,13 +124,22 @@ void GCGEMMMatrixAccumulateBiasesKernel::run(const Window &window)
}
else if(_accum->info()->data_type() == DataType::F16)
{
- add_2D_tensor_argument(idx, _accum, BufferParam(1, 3), accum_slice);
- add_1D_tensor_argument(idx, _biases, BufferParam(2, 3), biases_slice);
+#if defined(ACCUM_PROCESS_4X)
+ BufferParam param = { 1, 3 };
+ add_2D_tensor_argument(idx, _accum, param, accum_slice);
+ param.binding_point = 2;
+ add_1D_tensor_argument(idx, _biases, param, biases_slice);
+#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
+ BufferParam param = { 1, 4 };
+ add_2D_tensor_argument(idx, _accum, param, accum_slice);
+ param.binding_point = 2;
+ add_1D_tensor_argument(idx, _biases, param, biases_slice);
+#endif /* ACCUM_PROCESS_4X */
}
_kernel.update_shader_params();
- enqueue(*this, accum_slice);
+ enqueue(*this, accum_slice, _lws);
}
while(window.slide_window_slice_2D(accum_slice));
}
diff --git a/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.cpp b/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.cpp
index a75ab6b609..8179525470 100644
--- a/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.cpp
+++ b/src/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.cpp
@@ -118,9 +118,23 @@ void GCGEMMMatrixMultiplyKernel::configure(const IGCTensor *input0, const IGCTen
switch(input0->info()->data_type())
{
case DataType::F16:
+ build_opts.emplace("#define DATA_TYPE_FP16");
+
+#define MM_PROCESS_4X_OPTIMIZED
+
+#if defined(MM_PROCESS_4X)
+ num_elems_processed_per_iteration_x = 4;
+ num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->info()->dimension(1)), 4);
+ build_opts.emplace("#define MM_PROCESS_4X");
+#elif defined(MM_PROCESS_4X_OPTIMIZED) /* MM_PROCESS_4X */
num_elems_processed_per_iteration_x = 4;
+ num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->info()->dimension(1)), 4);
+ build_opts.emplace("#define MM_PROCESS_4X_OPTIMIZED");
+#elif defined(MM_PROCESS_8X) /* MM_PROCESS_4X */
+ num_elems_processed_per_iteration_x = 8;
num_elems_processed_per_iteration_y = 1;
- build_opts.emplace("#define DATA_TYPE_FP16");
+ build_opts.emplace("#define MM_PROCESS_8X");
+#endif /* MM_PROCESS_4X */
break;
case DataType::F32:
@@ -143,8 +157,12 @@ void GCGEMMMatrixMultiplyKernel::configure(const IGCTensor *input0, const IGCTen
win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+#if defined(MM_PROCESS_4X_OPTIMIZED)
+ AccessWindowStatic input0_access(input0->info(), 0, 0, ceil_to_multiple(input0->info()->dimension(0), 8), ceil_to_multiple(input0->info()->dimension(1), num_elems_processed_per_iteration_y));
+#else /* MM_PROCESS_4X_OPTIMIZED */
AccessWindowStatic input0_access(input0->info(), 0, 0, ceil_to_multiple(input0->info()->dimension(0), num_elems_processed_per_iteration_x), ceil_to_multiple(input0->info()->dimension(1),
num_elems_processed_per_iteration_y));
+#endif /* MM_PROCESS_4X_OPTIMIZED */
AccessWindowStatic input1_access(input1->info(), 0, 0, ceil_to_multiple(input1->info()->dimension(0), num_elems_processed_per_iteration_x), input1->info()->dimension(1));
AccessWindowRectangle output_access(output->info(), 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
@@ -185,9 +203,19 @@ void GCGEMMMatrixMultiplyKernel::run(const Window &window)
switch(_input0->info()->data_type())
{
case DataType::F16:
+#if defined(MM_PROCESS_4X)
add_2D_tensor_argument(idx, _input0, BufferParam(1, 2), slice);
add_2D_tensor_argument(idx, _input1, BufferParam(2, 3), slice_b);
add_2D_tensor_argument(idx, _output, BufferParam(3, 3), slice);
+#elif defined(MM_PROCESS_4X_OPTIMIZED) /* MM_PROCESS_4X */
+ add_2D_tensor_argument(idx, _input0, BufferParam(1, 4), slice);
+ add_2D_tensor_argument(idx, _input1, BufferParam(2, 3), slice_b);
+ add_2D_tensor_argument(idx, _output, BufferParam(3, 3), slice);
+#elif defined(MM_PROCESS_8X) /* MM_PROCESS_4X */
+ add_2D_tensor_argument(idx, _input0, BufferParam(1, 4), slice);
+ add_2D_tensor_argument(idx, _input1, BufferParam(2, 4), slice_b);
+ add_2D_tensor_argument(idx, _output, BufferParam(3, 4), slice);
+#endif /* MM_PROCESS_4X */
break;
case DataType::F32:
diff --git a/src/core/GLES_COMPUTE/kernels/GCIm2ColKernel.cpp b/src/core/GLES_COMPUTE/kernels/GCIm2ColKernel.cpp
index 97c4dc48a1..e849891c7c 100644
--- a/src/core/GLES_COMPUTE/kernels/GCIm2ColKernel.cpp
+++ b/src/core/GLES_COMPUTE/kernels/GCIm2ColKernel.cpp
@@ -107,7 +107,38 @@ void GCIm2ColKernel::configure(const IGCTensor *input, IGCTensor *output, std::p
else
{
build_opts.insert("#define IM2COL_REDUCED");
- _num_elems_processed_per_iteration = 4 / input->info()->element_size();
+
+ if(input->info()->data_type() == DataType::F32)
+ {
+ _num_elems_processed_per_iteration = 4 / input->info()->element_size();
+ }
+ else if(input->info()->data_type() == DataType::F16)
+ {
+ int input_width = input->info()->dimension(0);
+ int input_height = input->info()->dimension(1);
+
+ build_opts.insert("#define IMAGE_SIZE " + support::cpp11::to_string(input_width * input_height));
+ if(input_width % 8 == 0)
+ {
+ _num_elems_processed_per_iteration = 8;
+ build_opts.insert("#define IM2COL_REDUCED_8X");
+ }
+ else if(input_width % 4 == 0)
+ {
+ _num_elems_processed_per_iteration = 4;
+ build_opts.insert("#define IM2COL_REDUCED_4X");
+ }
+ else if(input_width % 2 == 0)
+ {
+ _num_elems_processed_per_iteration = 2;
+ build_opts.insert("#define IM2COL_REDUCED_2X");
+ }
+ else
+ {
+ _num_elems_processed_per_iteration = 2;
+ build_opts.insert("#define IM2COL_REDUCED_GENERIC");
+ }
+ }
// Create kernel
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel("im2col_reduced", build_opts));
diff --git a/src/core/GLES_COMPUTE/kernels/GCTransposeKernel.cpp b/src/core/GLES_COMPUTE/kernels/GCTransposeKernel.cpp
index 5bd34c2c85..acb998840b 100644
--- a/src/core/GLES_COMPUTE/kernels/GCTransposeKernel.cpp
+++ b/src/core/GLES_COMPUTE/kernels/GCTransposeKernel.cpp
@@ -64,12 +64,25 @@ void GCTransposeKernel::configure(const IGCTensor *input, IGCTensor *output)
build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
+ // Configure kernel window
+ unsigned int num_elems_processed_per_iteration = 4;
+
+ if(input->info()->data_type() == DataType::F16)
+ {
+#define TRANSPOSE_8X8
+
+#if defined(TRANSPOSE_4X4)
+ build_opts.emplace(("#define TRANSPOSE_4X4"));
+ num_elems_processed_per_iteration = 4;
+#elif defined(TRANSPOSE_8X8) /* TRANSPOSE_4X4 */
+ build_opts.emplace(("#define TRANSPOSE_8X8"));
+ num_elems_processed_per_iteration = 8;
+#endif /* TRANSPOSE_4X4 */
+ }
+
// Create kernel
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel("transpose", build_opts));
- // Configure kernel window
- const unsigned int num_elems_processed_per_iteration = 4;
-
Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration, num_elems_processed_per_iteration));
AccessWindowRectangle input_access(input->info(), 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration);
@@ -100,8 +113,17 @@ void GCTransposeKernel::run(const Window &window)
}
else if(_input->info()->data_type() == DataType::F16)
{
- add_2D_tensor_argument(idx, _input, BufferParam(1, 3), slice);
- add_2D_tensor_argument(idx, _output, BufferParam(2, 3), slice);
+#if defined(TRANSPOSE_4X4)
+ BufferParam param = { 1, 3 };
+ add_2D_tensor_argument(idx, _input, param, slice);
+ param.binding_point = 2;
+ add_2D_tensor_argument(idx, _output, param, slice);
+#elif defined(TRANSPOSE_8X8) /* TRANSPOSE_4X4 */
+ BufferParam param = { 1, 4 };
+ add_2D_tensor_argument(idx, _input, param, slice);
+ param.binding_point = 2;
+ add_2D_tensor_argument(idx, _output, param, slice);
+#endif /* TRANSPOSE_4X4 */
}
_kernel.update_shader_params();
diff --git a/tests/benchmark/fixtures/FullyConnectedLayerFixture.h b/tests/benchmark/fixtures/FullyConnectedLayerFixture.h
index 2d1f2334b6..ef08c4ad8b 100644
--- a/tests/benchmark/fixtures/FullyConnectedLayerFixture.h
+++ b/tests/benchmark/fixtures/FullyConnectedLayerFixture.h
@@ -30,6 +30,13 @@
#include "tests/Utils.h"
#include "tests/framework/Fixture.h"
+#ifdef ARM_COMPUTE_GC
+#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
+#include "tests/GLES_COMPUTE/Helper.h"
+
+using namespace arm_compute::test::gles_compute;
+#endif /* ARM_COMPUTE_GC */
+
namespace arm_compute
{
namespace test
@@ -71,6 +78,12 @@ public:
void run()
{
fc_layer.run();
+#ifdef ARM_COMPUTE_GC
+ if(opengles31_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::GCTensor>::value)
+ {
+ force_sync_tensor(dst);
+ }
+#endif /* ARM_COMPUTE_GC */
}
void teardown()