aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemmlowp.cl
diff options
context:
space:
mode:
authorMichele Di Giorgio <michele.digiorgio@arm.com>2019-11-27 16:17:30 +0000
committerMichele Di Giorgio <michele.digiorgio@arm.com>2019-12-03 11:15:36 +0000
commitf9179d393a07eb9eed753e315df79d22391906c6 (patch)
treed8a1fd9d984bdd335d3ecac117ec33c4523211ef /src/core/CL/cl_kernels/gemmlowp.cl
parentb714b1d6a53e6c33df2ea3c1e8340f20480d799b (diff)
downloadComputeLibrary-f9179d393a07eb9eed753e315df79d22391906c6.tar.gz
COMPMID-2793: Add support for QASYMM8_SIGNED in CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel
Change-Id: I8abfdd3372cc394b98ec038b9fcb4abfe9216894 Signed-off-by: Michele Di Giorgio <michele.digiorgio@arm.com> Reviewed-on: https://review.mlplatform.org/c/2401 Reviewed-by: Giorgio Arena <giorgio.arena@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/gemmlowp.cl')
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl165
1 files changed, 91 insertions, 74 deletions
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index fa08b149e4..47791fbe74 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -25,6 +25,8 @@
#include "helpers_asymm.h"
#include "repeat.h"
+#if defined(DATA_TYPE) && defined(ACC_DATA_TYPE)
+
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), (val));
@@ -36,17 +38,17 @@
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
/** Specialized macros to perform the dot product instruction between two vectors of size N [1,16]. These macros use the dot8 instruction */
-#define ARM_DOT1(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar3)0), (uchar4)(b, (uchar3)0), c); \
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ ARM_DOT((VEC_DATA_TYPE(DATA_TYPE, 4))(a, (VEC_DATA_TYPE(DATA_TYPE, 3))0), (VEC_DATA_TYPE(DATA_TYPE, 4))(b, (VEC_DATA_TYPE(DATA_TYPE, 3))0), c); \
})
-#define ARM_DOT2(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar2)0), (uchar4)(b, (uchar2)0), c); \
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ ARM_DOT((VEC_DATA_TYPE(DATA_TYPE, 4))(a, (VEC_DATA_TYPE(DATA_TYPE, 2))0), (VEC_DATA_TYPE(DATA_TYPE, 4))(b, (VEC_DATA_TYPE(DATA_TYPE, 2))0), c); \
})
-#define ARM_DOT3(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar)0), (uchar4)(b, (uchar)0), c); \
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT((VEC_DATA_TYPE(DATA_TYPE, 4))(a, (DATA_TYPE)0), (VEC_DATA_TYPE(DATA_TYPE, 4))(b, (DATA_TYPE)0), c); \
})
#define ARM_DOT4(a, b, c) \
({ \
@@ -66,24 +68,24 @@
#else // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
/** Specialized macros to perform the dot product instruction between two vectors of size K0 [1,16] without using the dot8 instruction. */
-#define ARM_DOT1(a, b, c) \
- ({ \
- c += (uint)a * b; \
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ c += (ACC_DATA_TYPE)a * b; \
})
-#define ARM_DOT2(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- c += (uint)a.s1 * b.s1; \
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ c += (ACC_DATA_TYPE)a.s0 * b.s0; \
+ c += (ACC_DATA_TYPE)a.s1 * b.s1; \
})
-#define ARM_DOT3(a, b, c) \
- ({ \
- ARM_DOT2(a, b, c); \
- c += (uint)a.s2 * b.s2; \
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT2(a, b, c); \
+ c += (ACC_DATA_TYPE)a.s2 * b.s2; \
})
-#define ARM_DOT4(a, b, c) \
- ({ \
- ARM_DOT3(a, b, c); \
- c += (uint)a.s3 * b.s3; \
+#define ARM_DOT4(a, b, c) \
+ ({ \
+ ARM_DOT3(a, b, c); \
+ c += (ACC_DATA_TYPE)a.s3 * b.s3; \
})
#define ARM_DOT8(a, b, c) \
({ \
@@ -194,13 +196,15 @@
})
#if defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
-#define VECTOR_UCHAR VEC_DATA_TYPE(uchar, NUM_ELEMS_PROCESSED_PER_THREAD_X)
-#define VECTOR_UINT VEC_DATA_TYPE(uint, NUM_ELEMS_PROCESSED_PER_THREAD_X)
+#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
+#define VECTOR_ACC_TYPE VEC_DATA_TYPE(ACC_DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
#define VECTOR_INT VEC_DATA_TYPE(int, NUM_ELEMS_PROCESSED_PER_THREAD_X)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
*
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
* @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
* -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
* -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
@@ -302,93 +306,98 @@ __kernel void gemmlowp_mm_midgard(IMAGE_DECLARATION(src0),
int end_row_vec_a = src_addr.s0 + COLS_A;
- VECTOR_UINT acc0 = 0;
+ VECTOR_ACC_TYPE acc0 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- VECTOR_UINT acc1 = 0;
+ VECTOR_ACC_TYPE acc1 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- VECTOR_UINT acc2 = 0;
+ VECTOR_ACC_TYPE acc2 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- VECTOR_UINT acc3 = 0;
+ VECTOR_ACC_TYPE acc3 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- VECTOR_UINT acc4 = 0;
+ VECTOR_ACC_TYPE acc4 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
for(; src_addr.s0 <= (end_row_vec_a - 2); src_addr += (int2)(2, 2 * src1_stride_y))
{
// Load values from matrix A
- uchar2 a0 = vload2(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- uchar2 a1 = vload2(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- uchar2 a2 = vload2(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uchar2 a3 = vload2(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uchar2 a4 = vload2(0, src0_ptr + src_addr.s0 + 4 * src0_stride_y);
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a4 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 4 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
- VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
- VECTOR_UCHAR b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1 + src1_stride_y);
+ VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
+ VECTOR_TYPE b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
// Accumulate
- acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0.s0;
- acc0 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a0.s1;
+ acc0 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a0.s0;
+ acc0 += CONVERT(b1, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a0.s1;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1.s0;
- acc1 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a1.s1;
+ acc1 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a1.s0;
+ acc1 += CONVERT(b1, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a1.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2.s0;
- acc2 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a2.s1;
+ acc2 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a2.s0;
+ acc2 += CONVERT(b1, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a2.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3.s0;
- acc3 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a3.s1;
+ acc3 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a3.s0;
+ acc3 += CONVERT(b1, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a3.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- acc4 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a4.s0;
- acc4 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a4.s1;
+ acc4 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a4.s0;
+ acc4 += CONVERT(b1, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a4.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
// Load values from matrix A
- uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+ DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+ DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+ DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+ DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- uchar a4 = *(src0_ptr + src_addr.s0 + 4 * src0_stride_y);
+ DATA_TYPE a4 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 4 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
// Load values from matrix B
- VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
+ VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
// Accumulate
- acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0;
+ acc0 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1;
+ acc1 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2;
+ acc2 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a2;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3;
+ acc3 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a3;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
- acc4 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a4;
+ acc4 += CONVERT(b0, VECTOR_ACC_TYPE) * (VECTOR_ACC_TYPE)a4;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 4
}
@@ -476,6 +485,8 @@ __kernel void gemmlowp_mm_midgard(IMAGE_DECLARATION(src0),
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
*
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
* @note The GEMM's dimensions M and N must be passed at compile time using -DM and -DN (i.e. -DM=52 and -DN=90).
* @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
@@ -588,15 +599,15 @@ __kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(16, uint, zrhs, 0);
// Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(uint, N0), c, 0); //VEC_DATA_TYPE(uint, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(ACC_DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(ACC_DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
for(int i = 0; i < k; i += K0)
{
// Load values from LHS matrix
- LOAD_BLOCK(M0, K0, uchar, a, lhs_addr, 0, LHS_STEP_X, zlhs);
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X, zlhs);
// Load values from RHS matrix
- LOAD_BLOCK(N0, K0, uchar, b, rhs_addr, 0, RHS_STEP_X, zrhs);
+ LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X, zrhs);
// Partial matrix multiplication M0,N0,K0
ARM_MM_K0XN0XM0(M0, N0, K0, a, b, c);
@@ -643,6 +654,8 @@ __kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
* The LHS matrix is NOT reshaped
* The RHS matrix is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
*
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
* @note The number of columns of LHS matrix must be passed at compile time using -DK (i.e. -DK=64)
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (i.e. -DN0=8, -DK0=4).
* @note The number of M0 rows to process must be passed at compile time using -DM0 (i.e. -DM0=2)
@@ -661,7 +674,7 @@ __kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
* -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
* (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
*
- * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
+ * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: QASYMM8/QASYMM8_SIGNED
* @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
* @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
@@ -673,7 +686,7 @@ __kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
* @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
* @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
@@ -758,15 +771,15 @@ __kernel void gemmlowp_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#endif // defined(REINTERPRET_INPUT_AS_3D)
// Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(uint, N0), c, 0); //VEC_DATA_TYPE(uint, N0) c0=0,c1=0,c2=0,... c(N0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(ACC_DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(ACC_DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0;
for(int i = 0; i < K; i += K0)
{
// Load values from LHS matrix
- LOAD_BLOCK(M0, K0, uchar, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
// Load values from RHS matrix
- LOAD_BLOCK(N0, K0, uchar, b, rhs_ptr, rhs_offset, RHS_STEP_X, zrhs);
+ LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X, zrhs);
// Partial matrix multiplication M0,N0,K0
ARM_MM_K0XN0XM0(M0, N0, K0, a, b, c);
@@ -809,6 +822,8 @@ __kernel void gemmlowp_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
* The LHS matrix is NOT reshaped
* The RHS matrix is NOT reshaped
*
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
* @note The number of columns of LHS matrix must be passed at compile time using -DK (i.e. -DK=64)
* @note The number of M0 rows to process must be passed at compile time using -DM0 (i.e. -DM0=2)
* @note The number of N0 columns to process must be passed at compile time using -DN0 (i.e. -DN0=2)
@@ -908,20 +923,20 @@ __kernel void gemmlowp_mm_native(IMAGE_DECLARATION(lhs),
#endif // defined(REINTERPRET_INPUT_AS_3D)
// Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(uint, N0), c, 0); //VEC_DATA_TYPE(uint, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(ACC_DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(ACC_DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
int i = 0;
for(; i <= (K - K0); i += K0)
{
// Load values from LHS matrix
- LOAD_BLOCK(M0, K0, uchar, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
// Load values from RHS matrix
- LOAD_BLOCK(K0, N0, uchar, b, rhs_ptr, rhs_offset, rhs_stride_y, zrhs);
+ LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zrhs);
// Transpose the values from RHS matrix
- TRANSPOSE_K0XN0(K0, N0, b_t, b);
+ TRANSPOSE_K0XN0(K0, N0, b_t, b, DATA_TYPE);
// Partial matrix multiplication M0,N0,K0
ARM_MM_K0XN0XM0(M0, N0, K0, a, b_t, c);
@@ -935,13 +950,13 @@ __kernel void gemmlowp_mm_native(IMAGE_DECLARATION(lhs),
for(; i < K; ++i)
{
// Load values from LHS matrix
- LOAD_BLOCK(M0, 1, uchar, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+ LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
// Load values from RHS matrix
- LOAD_BLOCK(1, N0, uchar, b, rhs_ptr, rhs_offset, rhs_stride_y, zrhs);
+ LOAD_BLOCK(1, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zrhs);
// Transpose the values from RHS matrix
- TRANSPOSE_K0XN0(1, N0, b_t, b);
+ TRANSPOSE_K0XN0(1, N0, b_t, b, DATA_TYPE);
// Partial matrix multiplication M0,N0,1
ARM_MM_K0XN0XM0(M0, N0, 1, a, b_t, c);
@@ -975,6 +990,8 @@ __kernel void gemmlowp_mm_native(IMAGE_DECLARATION(lhs),
}
#endif // defined(M0) && defined(N0) && defined(K0) && defined(K)
+#endif // defined(DATA_TYPE) && defined(ACC_DATA_TYPE)
+
#if defined(COLS_A)
/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
*