aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2018-12-12 10:18:04 +0000
committerGian Marco Iodice <gianmarco.iodice@arm.com>2018-12-14 14:57:48 +0000
commitbf9731edfa0439cad4d70efc3065e71e199c62b8 (patch)
tree71340a3d04a6294744c642ed6e4a56c0e8a77592
parent92e278d5f462c930af1947883a5f48c10586ae9c (diff)
downloadComputeLibrary-bf9731edfa0439cad4d70efc3065e71e199c62b8.tar.gz
COMPMID-1687: Optimize CLGEMMMatrixMultiplyKernel for Mali-G76 - Part1
The current implementation is limited just to FP32 Change-Id: I185ab57e483e879d7c301e9cc3033efc8b41e244 Reviewed-on: https://review.mlplatform.org/389 Reviewed-by: Anthony Barbier <Anthony.barbier@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
-rw-r--r--arm_compute/core/CL/CLKernels.h1
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h88
-rw-r--r--arm_compute/core/utils/misc/ShapeCalculator.h25
-rw-r--r--arm_compute/runtime/CL/functions/CLGEMM.h40
-rw-r--r--src/core/CL/CLKernelLibrary.cpp2
-rw-r--r--src/core/CL/cl_kernels/gemm.cl503
-rw-r--r--src/core/CL/cl_kernels/im2col.cl171
-rw-r--r--src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp308
-rw-r--r--src/core/CL/kernels/CLIm2ColKernel.cpp6
-rw-r--r--src/runtime/CL/functions/CLGEMM.cpp224
-rw-r--r--tests/framework/Macros.h11
-rw-r--r--tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp224
-rw-r--r--tests/validation/CL/Im2Col.cpp1
-rw-r--r--tests/validation/fixtures/GEMMFixture.h111
14 files changed, 1629 insertions, 86 deletions
diff --git a/arm_compute/core/CL/CLKernels.h b/arm_compute/core/CL/CLKernels.h
index 37b92f2d6c..d89426dd32 100644
--- a/arm_compute/core/CL/CLKernels.h
+++ b/arm_compute/core/CL/CLKernels.h
@@ -78,6 +78,7 @@
#include "arm_compute/core/CL/kernels/CLGEMMMatrixAccumulateBiasesKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixAdditionKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixVectorMultiplyKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMReshapeLHSMatrixKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
diff --git a/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h b/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h
new file mode 100644
index 0000000000..d0f67e6f2c
--- /dev/null
+++ b/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h
@@ -0,0 +1,88 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef __ARM_COMPUTE_CLGEMMMATRIXMULTIPLYRESHAPEDKERNEL_H__
+#define __ARM_COMPUTE_CLGEMMMATRIXMULTIPLYRESHAPEDKERNEL_H__
+
+#include "arm_compute/core/CL/ICLKernel.h"
+
+namespace arm_compute
+{
+class ICLTensor;
+
+/** OpenCL kernel to multiply matrices when both the input matrices LHS (input0) and RHS (input1) have been reshaped
+ *
+ * @note The input matrices @p input0 and @p input1 must be reshaped through @ref CLGEMMReshapeLHSMatrixKernel and @ref CLGEMMReshapeRHSMatrixKernel
+ */
+class CLGEMMMatrixMultiplyReshapedKernel : public ICLKernel
+{
+public:
+ /** Default Constructor */
+ CLGEMMMatrixMultiplyReshapedKernel();
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLGEMMMatrixMultiplyReshapedKernel(const CLGEMMMatrixMultiplyReshapedKernel &) = delete;
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLGEMMMatrixMultiplyReshapedKernel &operator=(const CLGEMMMatrixMultiplyReshapedKernel &) = delete;
+ /** Allow instances of this class to be moved */
+ CLGEMMMatrixMultiplyReshapedKernel(CLGEMMMatrixMultiplyReshapedKernel &&) = default;
+ /** Allow instances of this class to be moved */
+ CLGEMMMatrixMultiplyReshapedKernel &operator=(CLGEMMMatrixMultiplyReshapedKernel &&) = default;
+ /** Initialise the kernel's input and output.
+ *
+ * @param[in] input0 Input tensor containing the LHS reshaped matrix. Data type supported: F32/F16
+ * @param[in] input1 Input tensor containing the RHS reshaped matrix. Data type supported: same as @p input0
+ * @param[out] output Output tensor to store the result of matrix multiplication. Data type supported: same as @p input0
+ * @param[in] alpha Weight of the matrix product
+ * @param[in] lhs_info LHS matrix information used for reshaping the input0 tensor
+ * @param[in] rhs_info RHS matrix information used for reshaping the input1 tensor
+ * @param[in] gemm_info GEMM information used to retrieve the original dimensions of the input matrices
+ */
+ void configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, float alpha, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ const GEMMReshapeInfo &gemm_info);
+ /** Static function to check if given info will lead to a valid configuration of @ref CLGEMMMatrixMultiplyReshapedKernel
+ *
+ * @param[in] input0 Input tensor containing the LHS reshaped matrix. Data type supported: F32/F16
+ * @param[in] input1 Input tensor containing the RHS reshaped matrix. Data type supported: same as @p input0
+ * @param[in] output Output tensor to store the result of matrix multiplication. Data type supported: same as @p input0
+ * @param[in] alpha Weight of the matrix product
+ * @param[in] lhs_info LHS matrix information used for reshaping the input0 tensor
+ * @param[in] rhs_info RHS matrix information used for reshaping the input1 tensor
+ * @param[in] gemm_info GEMM information used to retrieve the original dimensions of the input matrices
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ const GEMMReshapeInfo &gemm_info);
+
+ // Inherited methods overridden:
+ void run(const Window &window, cl::CommandQueue &queue) override;
+
+private:
+ const ICLTensor *_input0;
+ const ICLTensor *_input1;
+ ICLTensor *_output;
+ bool _slide_matrix_b;
+ bool _reinterpret_output_as_3d;
+};
+} // namespace arm_compute
+#endif /*__ARM_COMPUTE_CLGEMMMATRIXMULTIPLYRESHAPEDKERNEL_H__*/ \ No newline at end of file
diff --git a/arm_compute/core/utils/misc/ShapeCalculator.h b/arm_compute/core/utils/misc/ShapeCalculator.h
index 33893ad877..f41d00f54d 100644
--- a/arm_compute/core/utils/misc/ShapeCalculator.h
+++ b/arm_compute/core/utils/misc/ShapeCalculator.h
@@ -619,6 +619,31 @@ inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo
return output_shape;
}
+inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, const GEMMReshapeInfo &gemm_info)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
+
+ const bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d() != 0;
+ const int depth_output_gemm3d = reinterpret_output_as_3d ? gemm_info.depth_output_gemm3d() : 1;
+
+ // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
+ // dimension of the output tensor
+ const int dim0 = gemm_info.n();
+ const int dim1 = gemm_info.m() / depth_output_gemm3d;
+ const int dim2 = input0.tensor_shape()[2];
+ const int dim3 = input0.tensor_shape()[3];
+
+ TensorShape output_shape{ input0.tensor_shape() };
+
+ output_shape.set(0, dim0);
+ output_shape.set(1, dim1);
+ output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : dim2);
+ output_shape.set(3, reinterpret_output_as_3d ? dim2 : dim3);
+ output_shape.set(4, reinterpret_output_as_3d ? dim3 : 1);
+
+ return output_shape;
+}
+
inline TensorShape compute_output_stage_shape(const ITensorInfo &input, unsigned int gemm_3d_depth = 1, bool batch_size_on_z = false)
{
ARM_COMPUTE_ERROR_ON(input.data_layout() != DataLayout::NHWC && gemm_3d_depth > 1);
diff --git a/arm_compute/runtime/CL/functions/CLGEMM.h b/arm_compute/runtime/CL/functions/CLGEMM.h
index c4513f29d9..7d47194e56 100644
--- a/arm_compute/runtime/CL/functions/CLGEMM.h
+++ b/arm_compute/runtime/CL/functions/CLGEMM.h
@@ -27,6 +27,9 @@
#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixAdditionKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMReshapeLHSMatrixKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMTranspose1xWKernel.h"
#include "arm_compute/runtime/CL/CLMemoryGroup.h"
#include "arm_compute/runtime/CL/CLTensor.h"
@@ -39,9 +42,12 @@ class ICLTensor;
/** Basic function to execute GEMM on OpenCL. This function calls the following OpenCL kernels:
*
- * -# @ref CLGEMMInterleave4x4Kernel (only if the reshaped GEMM is selected by the heuristic model)
- * -# @ref CLGEMMTranspose1xWKernel (only if the reshaped GEMM is selected by the heuristic model)
- * -# @ref CLGEMMMatrixMultiplyKernel
+ * -# @ref CLGEMMInterleave4x4Kernel (only if the reshaped GEMM is selected by the heuristic model and the GPU target is NOT Mali-G76)
+ * -# @ref CLGEMMReshapeLHSMatrixKernel (only if the reshaped GEMM is selected by the heuristic model and the GPU target IS Mali-G76)
+ * -# @ref CLGEMMTranspose1xWKernel (only if the reshaped GEMM is selected by the heuristic model and the GPU target is NOT Mali-G76)
+ * -# @ref CLGEMMReshapeRHSMatrixKernel (only if the reshaped GEMM is selected by the heuristic model and the GPU target IS Mali-G76)
+ * -# @ref CLGEMMMatrixMultiplyKernel (if GPU target is NOT G76 or if the reshaped GEMM is NOT selected)
+ * -# @ref CLGEMMMatrixMultiplyReshapedKernel (only if the reshaped GEMM is selected by the heuristic model and the GPU target IS Mali-G76)
* -# @ref CLGEMMMatrixAdditionKernel (if c != nullptr and beta != 0.0)
*
*/
@@ -100,18 +106,22 @@ public:
void prepare() override;
private:
- CLMemoryGroup _memory_group;
- CLGEMMInterleave4x4Kernel _interleave_kernel;
- CLGEMMTranspose1xWKernel _transpose_kernel;
- CLGEMMMatrixMultiplyKernel _mm_kernel;
- CLGEMMMatrixAdditionKernel _ma_kernel;
- CLTensor _tmp_a;
- CLTensor _tmp_b;
- const ICLTensor *_original_b;
- bool _is_interleaved_transposed;
- bool _run_addition;
- bool _reshape_b_only_on_first_run;
- bool _is_prepared;
+ CLMemoryGroup _memory_group;
+ CLGEMMInterleave4x4Kernel _interleave_kernel; // TODO - COMPMID-1835: Remove this kernel and use CLGEMMReshapeLHSMatrixKernel
+ CLGEMMTranspose1xWKernel _transpose_kernel; // TODO - COMPMID-1836: Remove this kernel and use CLGEMMReshapeRHSMatrixKernel
+ CLGEMMMatrixMultiplyKernel _mm_kernel;
+ CLGEMMMatrixAdditionKernel _ma_kernel;
+ CLGEMMReshapeLHSMatrixKernel _reshape_lhs_kernel;
+ CLGEMMReshapeRHSMatrixKernel _reshape_rhs_kernel;
+ CLGEMMMatrixMultiplyReshapedKernel _mm_reshaped_kernel;
+ CLTensor _tmp_a;
+ CLTensor _tmp_b;
+ const ICLTensor *_original_b;
+ bool _is_interleaved_transposed;
+ bool _run_addition;
+ bool _reshape_b_only_on_first_run;
+ bool _is_prepared;
+ bool _is_G76_path; // TODO: To be removed once completed COMPMID-1835 and COMPMID-1836
};
}
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 54fc618bdf..03bc8d15db 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -280,6 +280,7 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemm_mm_floating_point_f16_bifrost_acc32", "gemm.cl" },
{ "gemm_mm_floating_point_f32_bifrost", "gemm.cl" },
{ "gemm_mm_floating_point_f32_bifrost_1000", "gemm.cl" },
+ { "gemm_mm_reshaped_lhs_nt_rhs_t", "gemm.cl" },
{ "gemm_lc_vm_f32", "gemm.cl" },
{ "gemm_transpose1xW", "gemm.cl" },
{ "gemm_reshape_lhs_matrix_nt", "gemm.cl" },
@@ -319,6 +320,7 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "im2col_generic_nchw", "im2col.cl" },
{ "im2col_generic_padx0_pady0_nchw", "im2col.cl" },
{ "im2col3x3_nhwc", "im2col.cl" },
+ { "im2col9x9_nhwc", "im2col.cl" },
{ "im2col_generic_nhwc", "im2col.cl" },
{ "init_level", "optical_flow_pyramid_lk.cl" },
{ "init_level_max", "optical_flow_pyramid_lk.cl" },
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index 40ee1d45ad..d37dd2d2d6 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -68,17 +68,17 @@ __kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
#endif // REINTERPRET_INPUT_AS_3D
)
{
-// Block size
+ // Block size
#define BLOCK_SIZE ((M0) * (K0))
-// Output offset X
+ // Output offset X
#if defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (K0)
#else // defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (BLOCK_SIZE)
#endif // defined(INTERLEAVE)
-// Output step X
+ // Output step X
#if defined(INTERLEAVE)
#define OUTPUT_STEP_X (K0) * (V0)
#else // Do not interleave
@@ -711,27 +711,27 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
// 8x4 -> 4x8
// 8x8 -> 8x8
// 8x16 -> 16x8
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
#endif // N0 > 2
#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
#endif // N0 > 4
#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
#endif // N0 > 8
#elif K0 == 16 // N0 == 16
@@ -832,6 +832,471 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
#endif // defined(TRANSPOSE)
#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
+
+#define ARM_DOT(x, y, val) \
+ ({ \
+ val = fma(x.s0, y.s0, val); \
+ val = fma(x.s1, y.s1, val); \
+ val = fma(x.s2, y.s2, val); \
+ val = fma(x.s3, y.s3, val); \
+ })
+
+#if K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ ARM_DOT(a, b, c); \
+ })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ ARM_DOT((a).s0123, (b).s0123, c); \
+ ARM_DOT((a).s4567, (b).s4567, c); \
+ })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ ARM_DOT((a).s0123, (b).s0123, c); \
+ ARM_DOT((a).s4567, (b).s4567, c); \
+ ARM_DOT((a).s89AB, (b).s89AB, c); \
+ ARM_DOT((a).sCDEF, (b).sCDEF, c); \
+ })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0 conditions
+
+#if N0 == 2
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ })
+#elif N0 == 4 // N0 == 4
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ })
+#elif N0 == 8 // N0 == 8
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ })
+#elif N0 == 16 // N0 == 16
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ ARM_DOT_K0((a), (b##8), (c.s8)); \
+ ARM_DOT_K0((a), (b##9), (c.s9)); \
+ ARM_DOT_K0((a), (b##A), (c.sA)); \
+ ARM_DOT_K0((a), (b##B), (c.sB)); \
+ ARM_DOT_K0((a), (b##C), (c.sC)); \
+ ARM_DOT_K0((a), (b##D), (c.sD)); \
+ ARM_DOT_K0((a), (b##E), (c.sE)); \
+ ARM_DOT_K0((a), (b##F), (c.sF)); \
+ })
+#else // N0 not supported
+#error "N0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
+ * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
+ * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ *
+ * @note The number of columns in the RHS matrix NOT reshaped needs to be passed at compile time using -DK (i.e. -Dk=128).
+ * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
+ * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (i.e. -DV0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 2, 4, 8, 16
+ * - K0 = 4, 8, 16
+ *
+ * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
+ *
+ * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
+ * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p src0_ptr
+ * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+ IMAGE_DECLARATION(dst),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
+ (get_global_id(2) * lhs_stride_z);
+
+ // Compute RHS matrix address
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += get_global_id(2) * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c0 = 0;
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c1 = 0;
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c2 = 0;
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c3 = 0;
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c4 = 0;
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c5 = 0;
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c6 = 0;
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c7 = 0;
+#endif // M0 > 7
+
+ for(int i = 0; i < K; i += K0)
+ {
+ // Supported cases (M0, K0):
+ // 2,4 - 2,8 - 2,16
+ // 3,4 - 3,8 - 3,16
+ // 4,4 - 4,8 - 4,16
+ // 5,4 - 5,8 - 5,16
+ // 6,4 - 6,8 - 6,16
+ // Load values from LHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a0 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 0 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a1 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 1 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a2 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 2 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a3 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 3 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a4 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 4 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a5 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 5 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a6 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 6 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a7 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 7 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 7
+
+ // Load values from RHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b0 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b1 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 1 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#if N0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b2 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 2 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b3 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 3 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 2
+#if N0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b4 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 4 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b5 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 5 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b6 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 6 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b7 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 7 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 4
+#if N0 > 8
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b8 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 8 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b9 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 9 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bA = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 10 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bB = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 11 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bC = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 12 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bD = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 13 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bE = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 14 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bF = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 15 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 8
+
+ // Accumulate
+ ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+ uint zout0 = 0;
+ uint zout1 = 0;
+ uint zout2 = 0;
+ uint zout3 = 0;
+ uint zout4 = 0;
+ uint zout5 = 0;
+ uint zout6 = 0;
+ uint zout7 = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ zout0 = (0 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout0 = min((uint)(DEPTH_GEMM3D - 1), zout0);
+ zout0 *= (dst_cross_plane_pad * dst_stride_z);
+#if M0 > 1
+ zout1 = (1 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout1 = min((uint)(DEPTH_GEMM3D - 1), zout1);
+ zout1 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 1
+#if M0 > 2
+ zout2 = (2 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout2 = min((uint)(DEPTH_GEMM3D - 1), zout2);
+ zout2 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 2
+#if M0 > 3
+ zout3 = (3 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout3 = min((uint)(DEPTH_GEMM3D - 1), zout3);
+ zout3 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 3
+#if M0 > 4
+ zout4 = (4 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout4 = min((uint)(DEPTH_GEMM3D - 1), zout4);
+ zout4 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 4
+#if M0 > 5
+ zout5 = (5 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout5 = min((uint)(DEPTH_GEMM3D - 1), zout5);
+ zout5 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 5
+#if M0 > 6
+ zout6 = (6 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout6 = min((uint)(DEPTH_GEMM3D - 1), zout6);
+ zout6 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 6
+#if M0 > 6
+ zout7 = (7 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout7 = min((uint)(DEPTH_GEMM3D - 1), zout7);
+ zout7 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 7
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ c0 = c0 * (DATA_TYPE)ALPHA;
+#if M0 > 1
+ c1 = c1 * (DATA_TYPE)ALPHA;
+#endif // M0 > 1
+#if M0 > 2
+ c2 = c2 * (DATA_TYPE)ALPHA;
+#endif // M0 > 2
+#if M0 > 3
+ c3 = c3 * (DATA_TYPE)ALPHA;
+#endif // M0 > 3
+#if M0 > 4
+ c4 = c4 * (DATA_TYPE)ALPHA;
+#endif // M0 > 4
+#if M0 > 5
+ c5 = c5 * (DATA_TYPE)ALPHA;
+#endif // M0 > 5
+#if M0 > 6
+ c6 = c6 * (DATA_TYPE)ALPHA;
+#endif // M0 > 5
+#if M0 > 7
+ c7 = c7 * (DATA_TYPE)ALPHA;
+#endif // M0 > 7
+#endif // defined(ALPHA)
+
+ // Store output block
+ VSTORE(N0)
+ (c0, 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + zout0));
+#if M0 > 1
+ VSTORE(N0)
+ (c1, 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + zout1));
+#endif // M0 > 1
+#if M0 > 2
+ VSTORE(N0)
+ (c2, 0, (__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y + zout2));
+#endif // M0 > 2
+#if M0 > 3
+ VSTORE(N0)
+ (c3, 0, (__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y + zout3));
+#endif // M0 > 3
+#if M0 > 4
+ VSTORE(N0)
+ (c4, 0, (__global DATA_TYPE *)(dst_addr + 4 * dst_stride_y + zout4));
+#endif // M0 > 4
+#if M0 > 5
+ VSTORE(N0)
+ (c5, 0, (__global DATA_TYPE *)(dst_addr + 5 * dst_stride_y + zout5));
+#endif // M0 > 5
+#if M0 > 6
+ VSTORE(N0)
+ (c6, 0, (__global DATA_TYPE *)(dst_addr + 6 * dst_stride_y + zout6));
+#endif // M0 > 6
+#if M0 > 7
+ VSTORE(N0)
+ (c7, 0, (__global DATA_TYPE *)(dst_addr + 7 * dst_stride_y + zout7));
+#endif // M0 > 7
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
+
#if defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH)
#if ELEMENT_SIZE == 1
diff --git a/src/core/CL/cl_kernels/im2col.cl b/src/core/CL/cl_kernels/im2col.cl
index 186d5a80ad..2bf59e4a99 100644
--- a/src/core/CL/cl_kernels/im2col.cl
+++ b/src/core/CL/cl_kernels/im2col.cl
@@ -1029,6 +1029,177 @@ __kernel void im2col3x3_nhwc(
#endif // HAS_BIAS
}
+#if PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
+#define IM2COL1x9(i) \
+ ({ \
+ yi_coord = yi - (int)PAD_TOP + i * DILATION_Y; \
+ yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1)); \
+ \
+ offset0 = xi_offset0 + (yi_coord * (int)src_stride_z); \
+ offset1 = xi_offset1 + (yi_coord * (int)src_stride_z); \
+ \
+ VECTOR_N values0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s0)); \
+ VECTOR_N values1 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s1)); \
+ VECTOR_N values2 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s2)); \
+ VECTOR_N values3 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s3)); \
+ VECTOR_N values4 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s4)); \
+ VECTOR_N values5 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s5)); \
+ VECTOR_N values6 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s6)); \
+ VECTOR_N values7 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s7)); \
+ VECTOR_N values8 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset1)); \
+ \
+ int y_cond = (int)((uint)(yi - (int)PAD_TOP + i * DILATION_Y) >= (uint)(SRC_HEIGHT)); \
+ values0 = select(values0, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s0)); \
+ values1 = select(values1, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s1)); \
+ values2 = select(values2, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s2)); \
+ values3 = select(values3, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s3)); \
+ values4 = select(values4, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s4)); \
+ values5 = select(values5, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s5)); \
+ values6 = select(values6, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s6)); \
+ values7 = select(values7, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond0.s7)); \
+ values8 = select(values8, (VECTOR_N)PAD_VALUE, (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))y_cond || (VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE))(x_cond1)); \
+ \
+ VSTORE(VECTOR_SIZE) \
+ (values0, 0, (__global DATA_TYPE *)(output_ptr) + (0 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values1, 0, (__global DATA_TYPE *)(output_ptr) + (1 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values2, 0, (__global DATA_TYPE *)(output_ptr) + (2 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values3, 0, (__global DATA_TYPE *)(output_ptr) + (3 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values4, 0, (__global DATA_TYPE *)(output_ptr) + (4 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values5, 0, (__global DATA_TYPE *)(output_ptr) + (5 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values6, 0, (__global DATA_TYPE *)(output_ptr) + (6 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values7, 0, (__global DATA_TYPE *)(output_ptr) + (7 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values8, 0, (__global DATA_TYPE *)(output_ptr) + (8 + i * 9) * SRC_DEPTH); \
+ })
+#else // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
+#define IM2COL1x9(i) \
+ ({ \
+ yi_coord = yi - (int)PAD_TOP + i * DILATION_Y; \
+ yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1)); \
+ \
+ offset0 = xi_offset0 + (yi_coord * (int)src_stride_z); \
+ offset1 = xi_offset1 + (yi_coord * (int)src_stride_z); \
+ \
+ VECTOR_N values0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s0)); \
+ VECTOR_N values1 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s1)); \
+ VECTOR_N values2 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s2)); \
+ VECTOR_N values3 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s3)); \
+ VECTOR_N values4 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s4)); \
+ VECTOR_N values5 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s5)); \
+ VECTOR_N values6 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s6)); \
+ VECTOR_N values7 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s7)); \
+ VECTOR_N values8 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset1)); \
+ \
+ VSTORE(VECTOR_SIZE) \
+ (values0, 0, (__global DATA_TYPE *)(output_ptr) + (0 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values1, 0, (__global DATA_TYPE *)(output_ptr) + (1 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values2, 0, (__global DATA_TYPE *)(output_ptr) + (2 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values3, 0, (__global DATA_TYPE *)(output_ptr) + (3 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values4, 0, (__global DATA_TYPE *)(output_ptr) + (4 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values5, 0, (__global DATA_TYPE *)(output_ptr) + (5 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values6, 0, (__global DATA_TYPE *)(output_ptr) + (6 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values7, 0, (__global DATA_TYPE *)(output_ptr) + (7 + i * 9) * SRC_DEPTH); \
+ VSTORE(VECTOR_SIZE) \
+ (values8, 0, (__global DATA_TYPE *)(output_ptr) + (8 + i * 9) * SRC_DEPTH); \
+ })
+#endif // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
+
+/** This kernel performs im2col when the kernel size is 9x9 and the data layout is NHWC
+ *
+ * @note This kernel computes VECTOR_SIZE elements
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
+ * @note The kernel depth must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
+ * @note The stride along the Y direction must be passed at compile time using -DSTRIDE_Y: e.g. -DSTRIDE_Y=1
+ * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/F16/F32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
+ * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
+ */
+__kernel void im2col9x9_nhwc(
+ TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst),
+ uint src_stride_w,
+ uint dst_stride_w)
+{
+ const int ch = min((int)(get_global_id(0) * VECTOR_SIZE), LAST_ACCESSED); // input feature map
+ const int yo = get_global_id(1);
+ const int batch = get_global_id(2); // batch size
+
+ // Calculate input indices
+ const int xi = (get_global_id(1) % CONVOLVED_WIDTH) * STRIDE_X;
+ const int yi = (get_global_id(1) / (int)CONVOLVED_WIDTH) * STRIDE_Y;
+
+ // Get input and output address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + batch * (int)src_stride_w;
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + yo * (int)dst_stride_y + batch * (int)dst_stride_w;
+
+ int yi_coord = 0;
+ int8 offset0 = 0;
+ int offset1 = 0;
+
+ // Clamp xi
+ int8 xi_offset0 = ((int8)xi + (int8)(0, 1, 2, 3, 4, 5, 6, 7) * DILATION_X - (int8)PAD_LEFT);
+ int xi_offset1 = ((int)xi + (int)(8) * DILATION_X - (int)PAD_LEFT);
+
+#if PAD_TOP != 0 || PAD_BOTTOM != 0
+#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
+ xi_offset0 = CLAMP(xi_offset0, (int8)0, (int8)(SRC_WIDTH - 1));
+ xi_offset1 = CLAMP(xi_offset1, (int)0, (int)(SRC_WIDTH - 1));
+#endif // PAD_TOP != 0 || PAD_BOTTOM != 0
+ xi_offset0 *= (int8)src_stride_y;
+ xi_offset1 *= (int)src_stride_y;
+
+ // Out-of-bound condition for X
+ int8 x_cond0 = (((int8)xi + (int8)(0, 1, 2, 3, 4, 5, 6, 7) * DILATION_X - (int8)PAD_LEFT) < (int8)0) || (((int8)xi + (int8)(0, 1, 2, 3, 4, 5, 6, 7) * DILATION_X - (int8)PAD_LEFT) >= (int8)SRC_WIDTH);
+ int x_cond1 = (((int)xi + (int)(8) * DILATION_X - (int)PAD_LEFT) < (int)0) || (((int)xi + (int)(8) * DILATION_X - (int)PAD_LEFT) >= (int)SRC_WIDTH);
+
+ IM2COL1x9(0);
+ IM2COL1x9(1);
+ IM2COL1x9(2);
+ IM2COL1x9(3);
+ IM2COL1x9(4);
+ IM2COL1x9(5);
+ IM2COL1x9(6);
+ IM2COL1x9(7);
+ IM2COL1x9(8);
+
+#ifdef HAS_BIAS
+ if((ch + VECTOR_SIZE) >= SRC_DEPTH)
+ {
+ *((__global DATA_TYPE *)(output_ptr) - ch + SRC_DEPTH * 81) = 1.0f;
+ }
+#endif // HAS_BIAS
+}
+
/** This opencl kernel performs a generic im2col implementation when the data layout is NHWC
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
diff --git a/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp b/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp
new file mode 100644
index 0000000000..1ecde3e558
--- /dev/null
+++ b/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp
@@ -0,0 +1,308 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h"
+
+#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/CL/CLHelpers.h"
+#include "arm_compute/core/CL/CLKernelLibrary.h"
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/CL/OpenCL.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "support/ToolchainSupport.h"
+
+#include <cstddef>
+#include <cstdint>
+#include <tuple>
+
+using namespace arm_compute;
+using namespace arm_compute::misc::shape_calculator;
+
+namespace arm_compute
+{
+class Coordinates;
+} // namespace arm_compute
+
+namespace
+{
+using ElementsProcessed = Steps;
+
+Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ const GEMMReshapeInfo &gemm_info)
+{
+ ARM_COMPUTE_UNUSED(alpha);
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F32, DataType::F16);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
+ ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.transpose);
+ ARM_COMPUTE_RETURN_ERROR_ON(!rhs_info.transpose);
+ ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 != rhs_info.k0);
+ ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 2 || lhs_info.m0 > 8);
+
+ const int m = gemm_info.m();
+ const int n = gemm_info.n();
+ const int k = gemm_info.k();
+
+ TensorShape tensor_shape0{ input0->tensor_shape() };
+ tensor_shape0.set(0, k);
+ tensor_shape0.set(1, m);
+
+ TensorShape tensor_shape1{ input1->tensor_shape() };
+ tensor_shape1.set(0, n);
+ tensor_shape1.set(1, k);
+
+ const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
+ const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
+
+ const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_lhs_reshaped_shape(tensor_info0, lhs_info));
+ const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
+
+ if(output->total_size() != 0)
+ {
+ const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info));
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
+ const GEMMReshapeInfo &gemm_info, ElementsProcessed &num_elements_processed)
+{
+ unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
+ unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
+ bool reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
+
+ Window win{};
+ Window win_out{};
+ bool window_changed = false;
+
+ // Output tensor auto initialization if not yet initialized
+ auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info)));
+
+ TensorInfo tmp_info(*output);
+
+ if(reinterpret_output_as_3d)
+ {
+ // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
+ // the window needs to be constructed on the 2D collapsed version of the tensor
+ TensorShape tmp_shape(output->tensor_shape());
+ tmp_shape.collapse(2U, 1U);
+ tmp_info.set_tensor_shape(tmp_shape);
+ }
+
+ // Configure kernel window
+ num_elems_processed_per_iteration_x = rhs_info.n0;
+ num_elems_processed_per_iteration_y = lhs_info.m0;
+
+ // Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
+ // The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
+ const int m = gemm_info.m();
+ const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;
+
+ win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+ win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+
+ AccessWindowStatic input0_access(input0, 0, 0,
+ ceil_to_multiple(input0->dimension(0), num_elems_processed_per_iteration_y),
+ input0->dimension(1));
+ AccessWindowStatic input1_access(input1, 0, 0,
+ ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
+ input1->dimension(1));
+ AccessWindowStatic output_access(output, 0, 0,
+ ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
+ output->dimension(1) + bottom_pad);
+
+ window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
+ update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
+
+ output_access.set_valid_region(win_out, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
+
+ // Collapse along the Z direction
+ // This collapse needs to be here in order to tune the Z dimension of LWS
+ Window collapsed = win;
+ const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
+ collapsed = win.collapse(win, dimension_to_collapse);
+
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_pair(err, collapsed);
+}
+} // namespace
+
+CLGEMMMatrixMultiplyReshapedKernel::CLGEMMMatrixMultiplyReshapedKernel()
+ : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_output_as_3d(false)
+{
+}
+
+void CLGEMMMatrixMultiplyReshapedKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, float alpha, const GEMMLHSMatrixInfo &lhs_info,
+ const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), alpha, lhs_info, rhs_info, gemm_info));
+
+ _input0 = input0;
+ _input1 = input1;
+ _output = output;
+ _reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
+
+ // Check if we need to slide the matrix B
+ const unsigned int num_dimensions_input0 = _input0->info()->num_dimensions();
+ _slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);
+
+ ElementsProcessed num_elements_processed{};
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info, num_elements_processed);
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+ ICLKernel::configure_internal(win_config.second);
+
+ // Create build options
+ CLBuildOptions build_opts;
+ build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input0->info()->data_type()));
+ build_opts.add_option_if(std::abs(1.0f - alpha) > 0.00001f, "-DALPHA=" + float_to_string_with_full_precision(alpha));
+ build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
+ build_opts.add_option_if(_reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
+ build_opts.add_option_if(_reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
+ build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
+ build_opts.add_option_if(lhs_info.interleave, "-DLHS_INTERLEAVE");
+ build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
+ build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k()));
+ build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
+ build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
+ build_opts.add_option("-DK0=" + support::cpp11::to_string(lhs_info.k0));
+ build_opts.add_option("-DV0=" + support::cpp11::to_string(lhs_info.v0));
+ build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
+
+ std::string kernel_name("gemm_mm_reshaped_");
+ kernel_name += lhs_info.transpose ? "lhs_t_" : "lhs_nt_";
+ kernel_name += rhs_info.transpose ? "rhs_t" : "rhs_nt";
+
+ // Create kernel
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
+
+ // Set config_id for enabling LWS tuning
+ _config_id = kernel_name;
+ _config_id += "_";
+ _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
+ _config_id += lower_string(string_from_data_type(input0->info()->data_type()));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(output->info()->dimension(1));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(output->info()->dimension(0));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(gemm_info.k());
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(output->info()->dimension(2));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(lhs_info.m0);
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(rhs_info.n0);
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(lhs_info.k0);
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(lhs_info.v0);
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(rhs_info.h0);
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(lhs_info.interleave);
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(rhs_info.interleave);
+}
+
+Status CLGEMMMatrixMultiplyReshapedKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, const GEMMLHSMatrixInfo &lhs_info,
+ const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
+{
+ ElementsProcessed num_elements_processed{};
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, alpha, lhs_info, rhs_info, gemm_info));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
+ input1->clone().get(),
+ output->clone().get(),
+ lhs_info,
+ rhs_info,
+ gemm_info,
+ num_elements_processed)
+ .first);
+
+ return Status{};
+}
+
+void CLGEMMMatrixMultiplyReshapedKernel::run(const Window &window, cl::CommandQueue &queue)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
+
+ if(_input1->info()->num_dimensions() < 3)
+ {
+ // The stride_z for matrix B must be zero if we do not slice
+ ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
+ }
+
+ Window slice = window.first_slice_window_3D();
+ Window slice_matrix_b = slice;
+
+ slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
+ slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+ if(_reinterpret_output_as_3d)
+ {
+ // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
+ const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3;
+ const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
+ _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
+ }
+
+ do
+ {
+ Window slice_b = slice;
+ // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+ // This scenario can happen when the matrix multiplication is used to perform a convolution operation
+ if(!_slide_matrix_b)
+ {
+ slice_b = slice_matrix_b;
+ }
+
+ unsigned int idx = 0;
+ add_2D_tensor_argument(idx, _input0, slice);
+ add_2D_tensor_argument(idx, _input1, slice_b);
+ add_2D_tensor_argument(idx, _output, slice);
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
+ enqueue(queue, *this, slice, lws_hint());
+ }
+ while(window.slide_window_slice_3D(slice));
+} \ No newline at end of file
diff --git a/src/core/CL/kernels/CLIm2ColKernel.cpp b/src/core/CL/kernels/CLIm2ColKernel.cpp
index 54ef23f2a2..e3d8df53e5 100644
--- a/src/core/CL/kernels/CLIm2ColKernel.cpp
+++ b/src/core/CL/kernels/CLIm2ColKernel.cpp
@@ -192,11 +192,15 @@ Im2ColConfiguration configure_opencl_kernel(const ITensorInfo *input, const Size
num_elems_processed_per_iteration = 2;
is_padding_required_nchw = false;
- // Only the 3x3 case is optimized for NHWC
+ // Only the 3x3 and 9x9 cases are optimized for NHWC
if(kernel_dims == Size2D(3U, 3U))
{
kernel_name = "im2col3x3_";
}
+ else if(kernel_dims == Size2D(9U, 9U))
+ {
+ kernel_name = "im2col9x9_";
+ }
build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
build_opts.add_option("-DLAST_ACCESSED=" + support::cpp11::to_string(std::max(static_cast<int>(input_channel - num_elems_processed_per_iteration), 0)));
diff --git a/src/runtime/CL/functions/CLGEMM.cpp b/src/runtime/CL/functions/CLGEMM.cpp
index baa0cf46dc..d0db8766d9 100644
--- a/src/runtime/CL/functions/CLGEMM.cpp
+++ b/src/runtime/CL/functions/CLGEMM.cpp
@@ -40,25 +40,32 @@ using namespace arm_compute::misc::shape_calculator;
namespace
{
-inline bool is_interleaved_transposed(int m, int n, int k, DataType data_type, bool reshape_b_only_on_first_run, GPUTarget gpu_target)
+inline bool is_interleaved_transposed(unsigned int m, unsigned int n, unsigned int k, DataType data_type, bool reshape_b_only_on_first_run, GPUTarget gpu_target)
{
bool flag = true;
if(gpu_target_is_in(gpu_target, GPUTarget::G52, GPUTarget::G52LIT, GPUTarget::G71, GPUTarget::G72, GPUTarget::G76))
{
- // COMPMID-852
- if(k > 256 && m > 4 && is_data_type_float(data_type) && reshape_b_only_on_first_run)
+ if((m > 1) && n < 16)
{
- constexpr float alpha = 3.2f;
- constexpr float fact0 = 1.51f;
- constexpr float fact1 = 1.66f;
- constexpr float ops = 12.0f;
- const float scale = k > 1024 ? 1.07f : 1.0f;
- flag = alpha + ((n * fact0) / ops) < ((fact1 * n * scale) / ops);
+ flag = true;
}
else
{
- flag = false;
+ // COMPMID-852
+ if(k > 256 && m > 4 && is_data_type_float(data_type) && reshape_b_only_on_first_run)
+ {
+ constexpr float alpha = 3.2f;
+ constexpr float fact0 = 1.51f;
+ constexpr float fact1 = 1.66f;
+ constexpr float ops = 12.0f;
+ const float scale = k > 1024 ? 1.07f : 1.0f;
+ flag = alpha + ((n * fact0) / ops) < ((fact1 * n * scale) / ops);
+ }
+ else
+ {
+ flag = false;
+ }
}
}
else
@@ -69,6 +76,43 @@ inline bool is_interleaved_transposed(int m, int n, int k, DataType data_type, b
return flag;
}
+
+inline void select_gemm_configuration(unsigned int m, unsigned int n, GEMMLHSMatrixInfo &lhs_info, GEMMRHSMatrixInfo &rhs_info)
+{
+ // Heuristic selection for GEMM
+ if(n <= 4)
+ {
+ // Configure GEMMLHSMatrixInfo
+ lhs_info.m0 = 4;
+ lhs_info.k0 = 8;
+ lhs_info.v0 = lhs_info.m0 * 16 < m ? 2 : 16;
+ lhs_info.interleave = true;
+ lhs_info.transpose = false;
+
+ // Configure GEMMRHSMatrixInfo
+ rhs_info.n0 = 2;
+ rhs_info.k0 = lhs_info.k0;
+ rhs_info.h0 = rhs_info.n0 * 16 < n ? 2 : 16;
+ rhs_info.interleave = false;
+ rhs_info.transpose = true;
+ }
+ else
+ {
+ // Configure GEMMLHSMatrixInfo
+ lhs_info.m0 = (m * n) / 24 > 2048 ? 6 : 5;
+ lhs_info.k0 = 4;
+ lhs_info.v0 = 32;
+ lhs_info.interleave = false;
+ lhs_info.transpose = false;
+
+ // Configure GEMMRHSMatrixInfo
+ rhs_info.n0 = 4;
+ rhs_info.k0 = lhs_info.k0;
+ rhs_info.h0 = 32;
+ rhs_info.interleave = true;
+ rhs_info.transpose = true;
+ }
+}
} // namespace
CLGEMM::CLGEMM(std::shared_ptr<IMemoryManager> memory_manager)
@@ -77,13 +121,17 @@ CLGEMM::CLGEMM(std::shared_ptr<IMemoryManager> memory_manager)
_transpose_kernel(),
_mm_kernel(),
_ma_kernel(),
+ _reshape_lhs_kernel(),
+ _reshape_rhs_kernel(),
+ _mm_reshaped_kernel(),
_tmp_a(),
_tmp_b(),
_original_b(nullptr),
_is_interleaved_transposed(false),
_run_addition(false),
_reshape_b_only_on_first_run(false),
- _is_prepared(false)
+ _is_prepared(false),
+ _is_G76_path(false)
{
}
@@ -112,13 +160,14 @@ void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
- bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
- const int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1);
- const int n = b->info()->dimension(0);
- const int k = a->info()->dimension(0);
- const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
- int mult_transpose1xW_width = 1;
- int mult_interleave4x4_height = 1;
+ DataType data_type = a->info()->data_type();
+ bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
+ const unsigned int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1);
+ const unsigned int n = b->info()->dimension(0);
+ const unsigned int k = a->info()->dimension(0);
+ const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
+ int mult_transpose1xW_width = 1;
+ int mult_interleave4x4_height = 1;
if(get_arch_from_target(gpu_target) == GPUTarget::BIFROST)
{
@@ -129,6 +178,10 @@ void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *
// Check if we need to reshape the matrix A and matrix B
_is_interleaved_transposed = is_interleaved_transposed(m, n, k, a->info()->data_type(), _reshape_b_only_on_first_run, gpu_target);
+ // Check if we can run the new reshaped GEMM
+ _is_G76_path = (gpu_target == GPUTarget::G76) && _is_interleaved_transposed && (data_type == DataType::F32);
+ ;
+
// if _is_interleaved_transposed is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D
if(_is_interleaved_transposed)
{
@@ -145,19 +198,40 @@ void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *
}
// _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel
- // Configure interleave kernel
- _interleave_kernel.configure(a, &_tmp_a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d());
+ if(_is_G76_path)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ GEMMRHSMatrixInfo rhs_info;
+
+ // Pick up the GEMM configuration based on M,N and K
+ select_gemm_configuration(m, n, lhs_info, rhs_info);
- // Configure transpose kernel
- _transpose_kernel.configure(b, &_tmp_b, mult_transpose1xW_width);
+ _reshape_lhs_kernel.configure(a, &_tmp_a, lhs_info, gemm_info.reinterpret_input_as_3d());
+ _reshape_rhs_kernel.configure(b, &_tmp_b, rhs_info);
+
+ // Configure and tune matrix multiply kernel
+ _mm_reshaped_kernel.configure(matrix_a, matrix_b, output, alpha, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1,
+ depth_output_gemm3d, reinterpret_input_as_3d));
+ }
+ else
+ {
+ // Configure interleave kernel
+ _interleave_kernel.configure(a, &_tmp_a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d());
+
+ // Configure transpose kernel
+ _transpose_kernel.configure(b, &_tmp_b, mult_transpose1xW_width);
+ }
}
- // Configure and tune matrix multiply kernel
- _mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k,
- mult_transpose1xW_width, mult_interleave4x4_height,
- depth_output_gemm3d, reinterpret_input_as_3d),
- gemm_info.fp_mixed_precision());
- CLScheduler::get().tune_kernel_static(_mm_kernel);
+ if(!_is_G76_path)
+ {
+ // Configure and tune matrix multiply kernel
+ _mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k,
+ mult_transpose1xW_width, mult_interleave4x4_height,
+ depth_output_gemm3d, reinterpret_input_as_3d),
+ gemm_info.fp_mixed_precision());
+ CLScheduler::get().tune_kernel_static(_mm_kernel);
+ }
if(_is_interleaved_transposed)
{
@@ -197,13 +271,14 @@ Status CLGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITenso
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
- bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
- const int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
- const int n = b->dimension(0);
- const int k = a->dimension(0);
- int mult_transpose1xW_width = 1;
- int mult_interleave4x4_height = 1;
- const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
+ DataType data_type = a->data_type();
+ bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
+ const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
+ const unsigned int n = b->dimension(0);
+ const unsigned int k = a->dimension(0);
+ int mult_transpose1xW_width = 1;
+ int mult_interleave4x4_height = 1;
+ const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
if(get_arch_from_target(gpu_target) == GPUTarget::BIFROST)
{
@@ -214,6 +289,9 @@ Status CLGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITenso
// Check if we need to reshape the matrix A and matrix B
const bool run_interleave_transpose = is_interleaved_transposed(m, n, k, a->data_type(), reshape_b_only_on_first_run, gpu_target);
+ // Check if we can run the new reshaped GEMM
+ const bool is_G76_path = (gpu_target == GPUTarget::G76) && run_interleave_transpose && (data_type == DataType::F32);
+
// if _is_interleaved_transposed is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D
if(run_interleave_transpose)
{
@@ -227,17 +305,41 @@ Status CLGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITenso
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
- // Validate interleave kernel
- auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &tmp_a_info, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d()));
+ if(is_G76_path)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ GEMMRHSMatrixInfo rhs_info;
- // Validate transpose kernel
- auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width)));
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &tmp_b_info, mult_transpose1xW_width));
+ // Pick up the GEMM configuration based on M,N and K
+ select_gemm_configuration(m, n, lhs_info, rhs_info);
+
+ auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_lhs_reshaped_shape(*a, lhs_info, gemm_info.reinterpret_input_as_3d())));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeLHSMatrixKernel::validate(a, &tmp_a_info, lhs_info, gemm_info.reinterpret_input_as_3d()));
+
+ auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_rhs_reshaped_shape(*b, rhs_info)));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(b, &tmp_b_info, rhs_info));
+
+ // Validate matrix multiply
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyReshapedKernel::validate(matrix_a_info, matrix_b_info, output, alpha, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1,
+ depth_output_gemm3d, reinterpret_input_as_3d)));
+ }
+ else
+ {
+ // Validate interleave kernel
+ auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &tmp_a_info, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d()));
+
+ // Validate transpose kernel
+ auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width)));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &tmp_b_info, mult_transpose1xW_width));
+ }
}
- // Validate matrix multiply
- ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output, alpha, run_interleave_transpose, reshape_info, gpu_target, gemm_info.fp_mixed_precision()));
+ if(!is_G76_path)
+ {
+ // Validate matrix multiply
+ ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output, alpha, run_interleave_transpose, reshape_info, gpu_target, gemm_info.fp_mixed_precision()));
+ }
if(beta != 0 && c != nullptr)
{
@@ -257,17 +359,38 @@ void CLGEMM::run()
if(_is_interleaved_transposed)
{
// Run interleave kernel
- CLScheduler::get().enqueue(_interleave_kernel, false);
+ if(_is_G76_path)
+ {
+ CLScheduler::get().enqueue(_reshape_lhs_kernel, false);
+ }
+ else
+ {
+ CLScheduler::get().enqueue(_interleave_kernel, false);
+ }
if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
- CLScheduler::get().enqueue(_transpose_kernel, false);
+ if(_is_G76_path)
+ {
+ CLScheduler::get().enqueue(_reshape_rhs_kernel, false);
+ }
+ else
+ {
+ CLScheduler::get().enqueue(_transpose_kernel, false);
+ }
}
}
// Run matrix multiply kernel
- CLScheduler::get().enqueue(_mm_kernel, !_run_addition);
+ if(_is_G76_path)
+ {
+ CLScheduler::get().enqueue(_mm_reshaped_kernel, !_run_addition);
+ }
+ else
+ {
+ CLScheduler::get().enqueue(_mm_kernel, !_run_addition);
+ }
// Run matrix addition kernel
if(_run_addition)
@@ -286,7 +409,14 @@ void CLGEMM::prepare()
{
// Run transpose kernel and mark original weights tensor as unused
_tmp_b.allocator()->allocate();
- CLScheduler::get().enqueue(_transpose_kernel, false);
+ if(_is_G76_path)
+ {
+ CLScheduler::get().enqueue(_reshape_rhs_kernel, false);
+ }
+ else
+ {
+ CLScheduler::get().enqueue(_transpose_kernel, false);
+ }
_original_b->mark_as_unused();
}
CLScheduler::get().queue().finish();
diff --git a/tests/framework/Macros.h b/tests/framework/Macros.h
index deca1ef51a..591b80e9d8 100644
--- a/tests/framework/Macros.h
+++ b/tests/framework/Macros.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -49,8 +49,8 @@
#define CONCAT(ARG0, ARG1) ARG0##ARG1
-#define VARIADIC_SIZE_IMPL(e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, size, ...) size
-#define VARIADIC_SIZE(...) VARIADIC_SIZE_IMPL(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
+#define VARIADIC_SIZE_IMPL(e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, size, ...) size
+#define VARIADIC_SIZE(...) VARIADIC_SIZE_IMPL(__VA_ARGS__, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#define JOIN_PARAM1(OP, param) OP(0, param)
#define JOIN_PARAM2(OP, param, ...) \
@@ -80,6 +80,9 @@
#define JOIN_PARAM10(OP, param, ...) \
OP(9, param) \
, JOIN_PARAM9(OP, __VA_ARGS__)
+#define JOIN_PARAM11(OP, param, ...) \
+ OP(10, param) \
+ , JOIN_PARAM10(OP, __VA_ARGS__)
#define JOIN_PARAM(OP, NUM, ...) \
CONCAT(JOIN_PARAM, NUM) \
(OP, __VA_ARGS__)
@@ -264,4 +267,4 @@
//
// TEST CASE MACROS END
//
-#endif /* ARM_COMPUTE_TEST_FRAMEWORK_MACROS */
+#endif /* ARM_COMPUTE_TEST_FRAMEWORK_MACROS */ \ No newline at end of file
diff --git a/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp b/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp
new file mode 100644
index 0000000000..e2fa194765
--- /dev/null
+++ b/tests/validation/CL/GEMMMatrixMultiplyReshaped.cpp
@@ -0,0 +1,224 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMReshapeLHSMatrixKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/CL/CLTensor.h"
+#include "arm_compute/runtime/CL/CLTensorAllocator.h"
+#include "tests/CL/CLAccessor.h"
+#include "tests/CL/Helper.h"
+#include "tests/PaddingCalculator.h"
+#include "tests/datasets/ShapeDatasets.h"
+#include "tests/framework/Asserts.h"
+#include "tests/framework/Macros.h"
+#include "tests/framework/datasets/Datasets.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/fixtures/GEMMFixture.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace
+{
+// *INDENT-OFF*
+// clang-format off
+RelativeTolerance<float> tolerance_f32(0.001f);
+constexpr float abs_tolerance_f32(0.0001f);
+
+/** M values to test */
+const auto m_values = framework::dataset::make("M", 37);
+
+/** N values to test */
+const auto n_values = framework::dataset::make("N", 51);
+
+/** K values to test */
+const auto k_values = framework::dataset::make("K", 43);
+
+/** Batch size values to test */
+const auto b_values = framework::dataset::make("batch_size", 1, 3);
+
+/** M0 values to test - Precommit */
+const auto m0_values_precommit = framework::dataset::make("M0", {4, 5, 6});
+
+/** N0 values to test - Precommit */
+const auto n0_values_precommit = framework::dataset::make("N0", { 2, 4, 8 });
+
+/** K0 values to test - Precommit */
+const auto k0_values_precommit = framework::dataset::make("K0", { 4, 8 });
+
+/** V0 values to test - Precommit */
+const auto v0_values_precommit = framework::dataset::make("V0", 1, 3);
+
+/** H0 values to test - Precommit */
+const auto h0_values_precommit = framework::dataset::make("H0", 1, 3);
+
+/** M0 values to test - Nightly */
+const auto m0_values_nightly = framework::dataset::make("M0", 2, 8);
+
+/** N0 values to test - Nightly */
+const auto n0_values_nightly = framework::dataset::make("N0", { 2, 4, 8, 16 });
+
+/** K0 values to test - Nightly */
+const auto k0_values_nightly = framework::dataset::make("K0", { 4, 8, 16 });
+
+/** V0 values to test - Nightly */
+const auto v0_values_nightly = framework::dataset::make("V0", 1, 4);
+
+/** H0 values to test - Nightly */
+const auto h0_values_nightly = framework::dataset::make("H0", 1, 4);
+
+/** Interleave values to test with LHS matrix */
+const auto i_values_lhs = framework::dataset::make("interleave_lhs", { true, false });
+
+/** Interleave values to test with RHS matrix */
+const auto i_values_rhs = framework::dataset::make("interleave_rhs", { true, false });
+
+} // namespace
+
+using namespace arm_compute::misc::shape_calculator;
+
+// Create function for CLGEMMReshapeLHSMatrixKernel
+using CLGEMMReshapeLHSMatrix = CLSynthetizeFunctionInitOutputWithZeroAndWithZeroConstantBorder<CLGEMMReshapeLHSMatrixKernel, 16>;
+
+// Create function for CLGEMMReshapeRHSMatrixKernel
+using CLGEMMReshapeRHSMatrix = CLSynthetizeFunctionInitOutputWithZeroAndWithZeroConstantBorder<CLGEMMReshapeRHSMatrixKernel, 16>;
+
+// Create function for CLGEMMMatrixMultiplyReshapedKernel
+using CLGEMMMatrixMultiplyReshaped = CLSynthetizeFunction<CLGEMMMatrixMultiplyReshapedKernel>;
+
+// Fixture for CLGEMMMatrixMultiplyReshaped
+using CLGEMMMatrixMultiplyReshapedFixture = GEMMMatrixMultiplyReshapedValidationFixture<CLTensor, CLAccessor, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped>;
+
+TEST_SUITE(CL)
+TEST_SUITE(GEMMMatrixMultiplyReshaped)
+DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ framework::dataset::make("batch_size", 1)),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ i_values_lhs),
+ i_values_rhs),
+m_value, n_value, k_value, b_value, m0_value, n0_value, k0_value, v0_value, h0_value, i_value_lhs, i_value_rhs)
+{
+ const unsigned int M = m_value;
+ const unsigned int N = n_value;
+ const unsigned int K = k_value;
+
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = m0_value;
+ lhs_info.k0 = k0_value;
+ lhs_info.v0 = v0_value;
+ lhs_info.interleave = i_value_lhs;
+ lhs_info.transpose = false;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = n0_value;
+ rhs_info.k0 = k0_value;
+ rhs_info.h0 = h0_value;
+ rhs_info.interleave = i_value_rhs;
+ rhs_info.transpose = true;
+
+ GEMMReshapeInfo gemm_info(M, N, K);
+
+ const TensorShape lhs_shape(K, M, b_value);
+ const TensorShape lhs_shape_reshaped = compute_lhs_reshaped_shape(TensorInfo(lhs_shape, 1, DataType::F32),
+ lhs_info,
+ false);
+
+ const TensorShape rhs_shape(N, K, b_value);
+ const TensorShape rhs_shape_reshaped = compute_rhs_reshaped_shape(TensorInfo(rhs_shape, 1, DataType::F32),
+ rhs_info);
+
+ const TensorShape dst_shape = compute_mm_shape(TensorInfo(lhs_shape_reshaped, 1, DataType::F32),
+ TensorInfo(rhs_shape_reshaped, 1, DataType::F32),
+ gemm_info);
+
+ // Create tensors
+ CLTensor lhs_reshaped = create_tensor<CLTensor>(lhs_shape_reshaped, DataType::F32);
+ CLTensor rhs_reshaped = create_tensor<CLTensor>(rhs_shape_reshaped, DataType::F32);
+ CLTensor dst = create_tensor<CLTensor>(dst_shape, DataType::F32);
+
+ ARM_COMPUTE_EXPECT(lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Create and configure function
+ CLGEMMMatrixMultiplyReshaped gemm;
+ gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, 1.0f, lhs_info, rhs_info, gemm_info);
+}
+
+TEST_SUITE(Float)
+TEST_SUITE(FP32)
+FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedFixture, framework::DatasetMode::ALL,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ v0_values_precommit),
+ h0_values_precommit),
+ i_values_lhs),
+ i_values_rhs))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, tolerance_f32, 0.f, abs_tolerance_f32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMMatrixMultiplyReshapedFixture, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
+ v0_values_nightly),
+ h0_values_nightly),
+ i_values_lhs),
+ i_values_rhs))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, tolerance_f32, 0.f, abs_tolerance_f32);
+}
+TEST_SUITE_END() // Float
+TEST_SUITE_END() // FP32
+TEST_SUITE_END() // GEMMMatrixMulipltyReshaped
+TEST_SUITE_END() // CL
+} // namespace validation
+} // namespace test
+} // namespace arm_compute \ No newline at end of file
diff --git a/tests/validation/CL/Im2Col.cpp b/tests/validation/CL/Im2Col.cpp
index ebf2331e5e..432b3b239a 100644
--- a/tests/validation/CL/Im2Col.cpp
+++ b/tests/validation/CL/Im2Col.cpp
@@ -49,6 +49,7 @@ const auto conv_filter_sizes = framework::dataset::make("KernelDims", { Size2D(3
Size2D(1U, 3U),
Size2D(5U, 3U),
Size2D(1U, 1U),
+ Size2D(9U, 9U),
Size2D(11U, 11U)} );
const auto padstrides = framework::dataset::make("PadStride", { PadStrideInfo(1U, 1U, 0U, 0U),
PadStrideInfo(1U, 1U, 1U, 1U),
diff --git a/tests/validation/fixtures/GEMMFixture.h b/tests/validation/fixtures/GEMMFixture.h
index 0083abffb5..ce2b177ce9 100644
--- a/tests/validation/fixtures/GEMMFixture.h
+++ b/tests/validation/fixtures/GEMMFixture.h
@@ -151,6 +151,117 @@ protected:
SimpleTensor<T> _reference{};
};
+template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
+class GEMMMatrixMultiplyReshapedValidationFixture : public framework::Fixture
+{
+public:
+ template <typename...>
+ void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
+ bool interleave_rhs)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = m0;
+ lhs_info.k0 = k0;
+ lhs_info.v0 = v0;
+ lhs_info.interleave = interleave_lhs;
+ lhs_info.transpose = false;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = n0;
+ rhs_info.k0 = k0;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = interleave_rhs;
+ rhs_info.transpose = true;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+
+ _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info);
+ _reference = compute_reference(lhs_shape, rhs_shape);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
+ library->fill(tensor, distribution, i);
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::F32, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::F32, 1);
+ TensorType lhs_reshaped;
+ TensorType rhs_reshaped;
+ TensorType dst;
+
+ const unsigned int M = lhs_shape[1];
+ const unsigned int N = rhs_shape[0];
+ const unsigned int K = lhs_shape[0];
+
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ ReshapeLHSFunctionType reshape_lhs;
+ ReshapeRHSFunctionType reshape_rhs;
+ GEMMFunctionType gemm;
+ reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
+ reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
+ gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, 1.0f, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
+
+ ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ lhs_reshaped.allocator()->allocate();
+ rhs_reshaped.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+
+ // Compute GEMM
+ reshape_lhs.run();
+ reshape_rhs.run();
+ gemm.run();
+
+ return dst;
+ }
+
+ SimpleTensor<float> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape[0] = rhs_shape[0];
+ dst_shape[1] = lhs_shape[1];
+
+ // Create reference
+ SimpleTensor<float> lhs{ lhs_shape, DataType::F32, 1 };
+ SimpleTensor<float> rhs{ rhs_shape, DataType::F32, 1 };
+ SimpleTensor<float> c{ dst_shape, DataType::F32, 1 };
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+ fill(c, 2);
+
+ return reference::gemm<float>(lhs, rhs, c, 1.0f, 0.0f);
+ }
+
+ TensorType _target{};
+ SimpleTensor<float> _reference{};
+};
} // namespace validation
} // namespace test
} // namespace arm_compute