aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2019-05-14 10:14:08 +0100
committerGeorgios Pinitas <georgios.pinitas@arm.com>2019-06-03 12:09:49 +0000
commit43a129e94df41f9ac8bc78b702da5a387ada0494 (patch)
tree900463d2235bc59e5492a934f33a949aa629a40e
parentd7dd15c445397ab879439de6659859db09f4b752 (diff)
downloadComputeLibrary-43a129e94df41f9ac8bc78b702da5a387ada0494.tar.gz
COMPMID-2379: Use the macros available in gemm_helpers.h in GEMMLowp OpenCL kernels
Change-Id: I09923a068bff36d42a3f2c1084ffa8bf218187b9 Signed-off-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Reviewed-on: https://review.mlplatform.org/c/1260 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h2
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h2
-rw-r--r--src/core/CL/CLKernelLibrary.cpp1
-rw-r--r--src/core/CL/cl_kernels/gemm_helpers.h183
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl1033
-rw-r--r--src/core/CL/cl_kernels/helpers.h2
-rw-r--r--src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.cpp3
-rw-r--r--src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp2
8 files changed, 369 insertions, 859 deletions
diff --git a/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h b/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h
index eaadaeff19..f0c8d5cdae 100644
--- a/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h
@@ -58,7 +58,7 @@ public:
* lhs_info.transpose: false
* @param[in] rhs_info RHS matrix information used for reshaping the input1 tensor. Only the following values are supported:
* rhs_info.n0: 2,3,4,8,16
- * rhs_info.k0: 2,3,4,8,16
+ * rhs_info.k0: same as lhs_info.k0
* rhs_info.transpose: true
* @param[in] gemm_info GEMM information used to retrieve the original dimensions of the input matrices
*
diff --git a/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h b/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h
index 6f8f8fead5..5328ee44bc 100644
--- a/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h
@@ -72,7 +72,7 @@ public:
* lhs_info.k0: 2,3,4,8,16
* @param[in] rhs_info RHS matrix information used for reshaping the input1 tensor. Only the following values are supported:
* rhs_info.n0: 2,3,4,8,16
- * rhs_info.k0: 2,3,4,8,16
+ * rhs_info.k0: same as lhs_info.k0
* rhs_info.transpose: true
* @param[in] gemm_info GEMM information used to retrieve the original dimensions of the input matrices
*
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 9952ed2fff..e426db28c9 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -334,7 +334,6 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemmlowp_mm_midgard", "gemmlowp.cl" },
{ "gemmlowp_mm_interleaved_transposed_midgard", "gemmlowp.cl" },
{ "gemmlowp_mm_reshaped_lhs_nt_rhs_t", "gemmlowp.cl" },
- { "gemmlowp_mm_reshaped_lhs_nt_rhs_t_dot8", "gemmlowp.cl" },
{ "gemmlowp_mm_reshaped_only_rhs_t", "gemmlowp.cl" },
{ "gemmlowp_offset_contribution", "gemmlowp.cl" },
{ "gemmlowp_offset_contribution_quantize_down", "gemmlowp.cl" },
diff --git a/src/core/CL/cl_kernels/gemm_helpers.h b/src/core/CL/cl_kernels/gemm_helpers.h
index c9e548afb8..2c76992b31 100644
--- a/src/core/CL/cl_kernels/gemm_helpers.h
+++ b/src/core/CL/cl_kernels/gemm_helpers.h
@@ -112,50 +112,50 @@
#define LOAD_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) LOAD_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z)
#define CALCULATE_Z_OFFSET_1(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##0 = (0 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##0 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##0); \
+ Z##0 = (0 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##0 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##0); \
Z##0 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_2(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_1(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##1 = (1 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##1 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##1); \
+ Z##1 = (1 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##1 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##1); \
Z##1 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_3(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_2(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##2 = (2 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##2 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##2); \
+ Z##2 = (2 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##2 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##2); \
Z##2 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_4(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_3(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##3 = (3 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##3 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##3); \
+ Z##3 = (3 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##3 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##3); \
Z##3 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_5(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_4(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##4 = (4 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##4 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##4); \
+ Z##4 = (4 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##4 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##4); \
Z##4 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_6(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_5(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##5 = (5 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##5 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##5); \
+ Z##5 = (5 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##5 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##5); \
Z##5 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_7(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_6(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##6 = (6 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##6 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##6); \
+ Z##6 = (6 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##6 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##6); \
Z##6 *= (CROSS_PLANE_PAD * STRIDE_Y);
#define CALCULATE_Z_OFFSET_8(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
CALCULATE_Z_OFFSET_7(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \
- Z##7 = (7 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
- Z##7 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##7); \
+ Z##7 = (7 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \
+ Z##7 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##7); \
Z##7 *= (CROSS_PLANE_PAD * STRIDE_Y);
// CALCULATE_Z_OFFSET_n calculates Z for Z##0 to Z##(n-1)
@@ -179,6 +179,7 @@
*/
#define CALCULATE_Z_OFFSET(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) CALCULATE_Z_OFFSET_STR(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y)
+// STORE_ROW_n macros
#define STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
VSTORE(N0) \
(BASENAME##0, 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0));
@@ -258,15 +259,106 @@
VSTORE(N0) \
(BASENAME##F, 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F));
+// CONVERT_STORE_ROW_n macros
+#define CONVERT_STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##0), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0));
+
+#define CONVERT_STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##1), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 1 * STRIDE_Y + Z##1));
+
+#define CONVERT_STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##2), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 2 * STRIDE_Y + Z##2));
+
+#define CONVERT_STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##3), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 3 * STRIDE_Y + Z##3));
+
+#define CONVERT_STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##4), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 4 * STRIDE_Y + Z##4));
+
+#define CONVERT_STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##5), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 5 * STRIDE_Y + Z##5));
+
+#define CONVERT_STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##6), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 6 * STRIDE_Y + Z##6));
+
+#define CONVERT_STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##7), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 7 * STRIDE_Y + Z##7));
+
+#define CONVERT_STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##8), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 8 * STRIDE_Y + Z##8));
+
+#define CONVERT_STORE_ROW_10(N0, DATA, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##9), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 9 * STRIDE_Y + Z##9));
+
+#define CONVERT_STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##A), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 10 * STRIDE_Y + Z##A));
+
+#define CONVERT_STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##B), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 11 * STRIDE_Y + Z##B));
+
+#define CONVERT_STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##C), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 12 * STRIDE_Y + Z##C));
+
+#define CONVERT_STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##D), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 13 * STRIDE_Y + Z##D));
+
+#define CONVERT_STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##E), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 14 * STRIDE_Y + Z##E));
+
+#define CONVERT_STORE_ROW_16(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##F), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F));
+
// STORE_ROW_n stores the rows 0..n-1 from variables BASENAME##0 to BASENAME##(n-1)
#define STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
-/** Store Blocks of M0 consecutive rows and N0 consecutive columns when using Z offset as well
-* Supported cases M0=1,2,3..16. N0=2,3,4,8,16, for variables BASENAME[0..M]
- * The data to store is expected to have consecutive names for each row, For e.g. For M0=3, and basename=c, the expected data is c0, c1 and c2.
- * The Z offset is expected to have consecutive names For e.g. For M0=3, and Z=zin, the expected z offsets are zin0, zin1 and zin2.
+
+// CONVERT_STORE_ROW_n converts and stores the rows 0..n-1 from variables BASENAME##0 to BASENAME##(n-1)
+#define CONVERT_STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) CONVERT_STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+
+/** Store a block of size M0 (rows) x NO (columns).
+ * Supported cases M0=1,2,3..16. N0=2,3,4,8,16, for variables BASENAME[0..M]
+ * The data to store is expected to have consecutive names for each row, For e.g. For M0=3, and basename=c, the expected data is c0, c1 and c2.
+ * The Z offset is expected to have consecutive names For e.g. For M0=3, and Z=zin, the expected z offsets are zin0, zin1 and zin2.
*/
#define STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+/** Convert and store a block of size M0 (rows) x NO (columns).
+ * Supported cases M0=1,2,3..16. N0=2,3,4,8,16, for variables BASENAME[0..M]
+ * The data to store is expected to have consecutive names for each row, For e.g. For M0=3, and basename=c, the expected data is c0, c1 and c2.
+ * The Z offset is expected to have consecutive names For e.g. For M0=3, and Z=zin, the expected z offsets are zin0, zin1 and zin2.
+ */
+#define CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) CONVERT_STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+
#define SCALE_ROW_1(DATA_TYPE, BASENAME, SCALE) \
BASENAME##0 = BASENAME##0 * (DATA_TYPE)SCALE;
@@ -336,3 +428,54 @@
* Supported cases N=1,2,3..16, for variables BASENAME[0..N]
*/
#define SCALE_BLOCK(N, DATA_TYPE, BASENAME, SCALE) SCALE_BLOCK_STR(N, DATA_TYPE, BASENAME, SCALE)
+
+/** Given a set of vectors of size K0, these macros create a new vector to contain the values at index IDX_COL (with IDX_COL < N0) for all input vectors */
+#define COLUMN_VECTOR1(IDX_COL, BASENAME, B) \
+ uchar BASENAME##IDX_COL = (uchar)((B##0).s##IDX_COL);
+#define COLUMN_VECTOR2(IDX_COL, BASENAME, B) \
+ uchar2 BASENAME##IDX_COL = (uchar2)((B##0).s##IDX_COL, (B##1).s##IDX_COL);
+#define COLUMN_VECTOR3(IDX_COL, BASENAME, B) \
+ uchar3 BASENAME##IDX_COL = (uchar3)((B##0).s##IDX_COL, (B##1).s##IDX_COL, (B##2).s##IDX_COL);
+#define COLUMN_VECTOR4(IDX_COL, BASENAME, B) \
+ uchar4 BASENAME##IDX_COL = (uchar4)((B##0).s##IDX_COL, (B##1).s##IDX_COL, (B##2).s##IDX_COL, (B##3).s##IDX_COL);
+#define COLUMN_VECTOR8(IDX_COL, BASENAME, B) \
+ uchar8 BASENAME##IDX_COL = (uchar8)((B##0).s##IDX_COL, (B##1).s##IDX_COL, (B##2).s##IDX_COL, (B##3).s##IDX_COL, (B##4).s##IDX_COL, (B##5).s##IDX_COL, (B##6).s##IDX_COL, (B##7).s##IDX_COL);
+#define COLUMN_VECTOR16(IDX_COL, BASENAME, B) \
+ uchar16 BASENAME##N0 = (uchar16)((B##0).s##IDX_COL, (B##1).s##IDX_COL, (B##2).s##IDX_COL, (B##3).s##IDX_COL, (B##4).s##IDX_COL, (B##5).s##IDX_COL, (B##6).s##IDX_COL, (B##7).s##IDX_COL, (B##8).s##IDX_COL, (B##9).s##IDX_COL, (B##A).s##IDX_COL, (B##B).s##IDX_COL, (B##C).s##IDX_COL, (B##D).s##IDX_COL, (B##E).s##IDX_COL, (B##F).s##IDX_COL);
+
+/** Given N0 vectors of size K0, these macros create K0 vectors of size N0 which are the result of a transposition */
+#define TRANSPOSE_K0X1(K0, BASENAME, B) \
+ COLUMN_VECTOR(K0, 0, BASENAME, B);
+#define TRANSPOSE_K0X2(K0, BASENAME, B) \
+ TRANSPOSE_K0X1(K0, BASENAME, B); \
+ COLUMN_VECTOR(K0, 1, BASENAME, B);
+#define TRANSPOSE_K0X3(K0, BASENAME, B) \
+ TRANSPOSE_K0X2(K0, BASENAME, B); \
+ COLUMN_VECTOR(K0, 2, BASENAME, B);
+#define TRANSPOSE_K0X4(K0, BASENAME, B) \
+ TRANSPOSE_K0X3(K0, BASENAME, B); \
+ COLUMN_VECTOR(K0, 3, BASENAME, B);
+#define TRANSPOSE_K0X8(K0, BASENAME, B) \
+ TRANSPOSE_K0X4(K0, BASENAME, B); \
+ COLUMN_VECTOR(K0, 4, BASENAME, B); \
+ COLUMN_VECTOR(K0, 5, BASENAME, B); \
+ COLUMN_VECTOR(K0, 6, BASENAME, B); \
+ COLUMN_VECTOR(K0, 7, BASENAME, B);
+#define TRANSPOSE_K0X16(K0, BASENAME, B) \
+ TRANSPOSE_K0X8(K0, BASENAME, B); \
+ COLUMN_VECTOR(K0, 8, BASENAME, B); \
+ COLUMN_VECTOR(K0, 9, BASENAME, B); \
+ COLUMN_VECTOR(K0, A, BASENAME, B); \
+ COLUMN_VECTOR(K0, B, BASENAME, B); \
+ COLUMN_VECTOR(K0, C, BASENAME, B); \
+ COLUMN_VECTOR(K0, D, BASENAME, B); \
+ COLUMN_VECTOR(K0, E, BASENAME, B); \
+ COLUMN_VECTOR(K0, F, BASENAME, B);
+
+#define COLUMN_VECTOR(K0, IDX_COL, BASENAME, B) \
+ CONCAT(COLUMN_VECTOR, K0) \
+ (IDX_COL, BASENAME, B);
+
+#define TRANSPOSE_K0XN0(K0, N0, BASENAME, B) \
+ CONCAT(TRANSPOSE_K0X, N0) \
+ (K0, BASENAME, B);
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index b1ba8e0377..0080369705 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -21,7 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
-#include "helpers.h"
+#include "gemm_helpers.h"
#include "helpers_asymm.h"
#include "repeat.h"
@@ -33,6 +33,166 @@
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+/** Specialized macros to perform the dot product instruction between two vectors of size N [1,16]. These macros use the dot8 instruction */
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ ARM_DOT((uchar4)(a, (uchar3)0), (uchar4)(b, (uchar3)0), c); \
+ })
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ ARM_DOT((uchar4)(a, (uchar2)0), (uchar4)(b, (uchar2)0), c); \
+ })
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT((uchar4)(a, (uchar)0), (uchar4)(b, (uchar)0), c); \
+ })
+#define ARM_DOT4(a, b, c) \
+ ({ \
+ ARM_DOT(a, b, c); \
+ })
+#define ARM_DOT8(a, b, c) \
+ ({ \
+ ARM_DOT4((a.lo), (b.lo), c); \
+ ARM_DOT4((a.hi), (b.hi), c); \
+ })
+#define ARM_DOT16(a, b, c) \
+ ({ \
+ ARM_DOT8((a.lo), (b.lo), c); \
+ ARM_DOT8((a.hi), (b.hi), c); \
+ })
+
+#else // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+/** Specialized macros to perform the dot product instruction between two vectors of size K0 [1,16] without using the dot8 instruction. */
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ c += (uint)a.s0 * b.s0; \
+ })
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ ARM_DOT1(a, b, c); \
+ c += (uint)a.s1 * b.s1; \
+ })
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT2(a, b, c); \
+ c += (uint)a.s2 * b.s2; \
+ })
+#define ARM_DOT4(a, b, c) \
+ ({ \
+ ARM_DOT3(a, b, c); \
+ c += (uint)a.s3 * b.s3; \
+ })
+#define ARM_DOT8(a, b, c) \
+ ({ \
+ ARM_DOT4((a.lo), (b.lo), c); \
+ ARM_DOT4((a.hi), (b.hi), c); \
+ })
+#define ARM_DOT16(a, b, c) \
+ ({ \
+ ARM_DOT8((a.lo), (b.lo), c); \
+ ARM_DOT8((a.hi), (b.hi), c); \
+ })
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+/** Specialized macros to perform a broadcast dot product operation between one vector "a" and N0 vectors "b" of size K0 [1,16] */
+#define ARM_DOT_K0X2(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0(k0, (a), (b##0), (c.s0)); \
+ ARM_DOT_K0(k0, (a), (b##1), (c.s1)); \
+ })
+#define ARM_DOT_K0X3(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X2(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##2), (c.s2)); \
+ })
+#define ARM_DOT_K0X4(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X3(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##3), (c.s3)); \
+ })
+#define ARM_DOT_K0X8(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X4(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##4), (c.s4)); \
+ ARM_DOT_K0(k0, (a), (b##5), (c.s5)); \
+ ARM_DOT_K0(k0, (a), (b##6), (c.s6)); \
+ ARM_DOT_K0(k0, (a), (b##7), (c.s7)); \
+ })
+#define ARM_DOT_K0X16(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X8(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##8), (c.s8)); \
+ ARM_DOT_K0(k0, (a), (b##9), (c.s9)); \
+ ARM_DOT_K0(k0, (a), (b##A), (c.sA)); \
+ ARM_DOT_K0(k0, (a), (b##B), (c.sB)); \
+ ARM_DOT_K0(k0, (a), (b##C), (c.sC)); \
+ ARM_DOT_K0(k0, (a), (b##D), (c.sD)); \
+ ARM_DOT_K0(k0, (a), (b##E), (c.sE)); \
+ ARM_DOT_K0(k0, (a), (b##F), (c.sF)); \
+ })
+
+/** Specialized macros to perform a a partial matrix multiplication with dimensions M0,N0,K0*/
+#define ARM_MM_K0XN0X1(n0, k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0XN0(n0, k0, (a##0), b, (c##0)); \
+ })
+#define ARM_MM_K0XN0X2(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X1(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##1), b, (c##1)); \
+ })
+#define ARM_MM_K0XN0X3(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X2(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##2), b, (c##2)); \
+ })
+#define ARM_MM_K0XN0X4(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X3(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##3), b, (c##3)); \
+ })
+#define ARM_MM_K0XN0X5(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X4(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##4), b, (c##4)); \
+ })
+#define ARM_MM_K0XN0X6(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X5(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##5), b, (c##5)); \
+ })
+#define ARM_MM_K0XN0X7(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X6(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##6), b, (c##6)); \
+ })
+#define ARM_MM_K0XN0X8(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X7(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##7), b, (c##7)); \
+ })
+
+#define ARM_DOT_K0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b), (c)); \
+ })
+
+#define ARM_DOT_K0XN0(n0, k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT_K0X, n0) \
+ (k0, (a), b, (c)); \
+ })
+
+#define ARM_MM_K0XN0XM0(m0, n0, k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_MM_K0XN0X, m0) \
+ (n0, k0, a, b, c); \
+ })
+
#if defined(COLS_B) && defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(TRANSPOSE1XW_WIDTH_STEP)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref CLGEMMReshapeLHSMatrixKernel and @ref CLGEMMReshapeRHSMatrixKernel before running the matrix multiplication
@@ -1352,161 +1512,7 @@ __kernel void gemmlowp_mm_bifrost_dot8(IMAGE_DECLARATION(src0),
#endif // defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(M) && defined(N)
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#if K0 == 2
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar2)0), (uchar4)(b, (uchar2)0), c); \
- })
-#elif K0 == 3 // K0 == 3
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar)0), (uchar4)(b, (uchar)0), c); \
- })
-#elif K0 == 4 // K0 == 4
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- ARM_DOT(a, b, c); \
- })
-#elif K0 == 8 // K0 == 8
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- ARM_DOT(a.s0123, b.s0123, c); \
- ARM_DOT(a.s4567, b.s4567, c); \
- })
-#elif K0 == 16 // K0 == 16
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- ARM_DOT(a.s0123, b.s0123, c); \
- ARM_DOT(a.s4567, b.s4567, c); \
- ARM_DOT(a.s89AB, b.s89AB, c); \
- ARM_DOT(a.sCDEF, b.sCDEF, c); \
- })
-#else // K0 not supported
-#error "K0 value not supported"
-#endif // K0
-
-#else // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#if K0 == 2
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- c += (uint)a.s1 * b.s1; \
- })
-#elif K0 == 3 // K0 == 3
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- c += (uint)a.s1 * b.s1; \
- c += (uint)a.s2 * b.s2; \
- })
-#elif K0 == 4 // K0 == 4
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- c += (uint)a.s1 * b.s1; \
- c += (uint)a.s2 * b.s2; \
- c += (uint)a.s3 * b.s3; \
- })
-#elif K0 == 8 // K0 == 8
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- c += (uint)a.s1 * b.s1; \
- c += (uint)a.s2 * b.s2; \
- c += (uint)a.s3 * b.s3; \
- c += (uint)a.s4 * b.s4; \
- c += (uint)a.s5 * b.s5; \
- c += (uint)a.s6 * b.s6; \
- c += (uint)a.s7 * b.s7; \
- })
-#elif K0 == 16 // K0 == 16
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- c += (uint)a.s1 * b.s1; \
- c += (uint)a.s2 * b.s2; \
- c += (uint)a.s3 * b.s3; \
- c += (uint)a.s4 * b.s4; \
- c += (uint)a.s5 * b.s5; \
- c += (uint)a.s6 * b.s6; \
- c += (uint)a.s7 * b.s7; \
- c += (uint)a.s8 * b.s8; \
- c += (uint)a.s9 * b.s9; \
- c += (uint)a.sA * b.sA; \
- c += (uint)a.sB * b.sB; \
- c += (uint)a.sC * b.sC; \
- c += (uint)a.sD * b.sD; \
- c += (uint)a.sE * b.sE; \
- c += (uint)a.sF * b.sF; \
- })
-#else // K0 not supported
-#error "K0 value not supported"
-#endif // K0
-
-#endif //defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#if N0 == 2
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- })
-#elif N0 == 3 // N0 == 3
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- })
-#elif N0 == 4 // N0 == 4
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- ARM_DOT_K0((a), (b##3), (c.s3)); \
- })
-#elif N0 == 8 // N0 == 8
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- ARM_DOT_K0((a), (b##3), (c.s3)); \
- ARM_DOT_K0((a), (b##4), (c.s4)); \
- ARM_DOT_K0((a), (b##5), (c.s5)); \
- ARM_DOT_K0((a), (b##6), (c.s6)); \
- ARM_DOT_K0((a), (b##7), (c.s7)); \
- })
-#elif N0 == 16 // N0 == 16
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- ARM_DOT_K0((a), (b##3), (c.s3)); \
- ARM_DOT_K0((a), (b##4), (c.s4)); \
- ARM_DOT_K0((a), (b##5), (c.s5)); \
- ARM_DOT_K0((a), (b##6), (c.s6)); \
- ARM_DOT_K0((a), (b##7), (c.s7)); \
- ARM_DOT_K0((a), (b##8), (c.s8)); \
- ARM_DOT_K0((a), (b##9), (c.s9)); \
- ARM_DOT_K0((a), (b##A), (c.sA)); \
- ARM_DOT_K0((a), (b##B), (c.sB)); \
- ARM_DOT_K0((a), (b##C), (c.sC)); \
- ARM_DOT_K0((a), (b##D), (c.sD)); \
- ARM_DOT_K0((a), (b##E), (c.sE)); \
- ARM_DOT_K0((a), (b##F), (c.sF)); \
- })
-#else // N0 not supported
-#error "N0 value not supported"
-#endif // N0 conditions
-
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices with QASYMM data type .
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices with QASYMM data type.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
*
@@ -1594,243 +1600,73 @@ __kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
#define RHS_STEP_LOOP (H0)
#endif // defined(RHS_INTERLEAVE)
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
#if defined(DUMMY_WORK_ITEMS)
- if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
+ if((x * N0 >= N) || (y * M0 >= M))
{
return;
}
#endif // defined(DUMMY_WORK_ITEMS)
// Compute LHS matrix address
- __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X + (get_global_id(1) / V0) * (uint)lhs_stride_y + (get_global_id(
- 2)
- * lhs_stride_z);
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
// Compute RHS matrix address
- __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X + (get_global_id(0) / (uint)H0) * rhs_stride_y;
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X + (x / (uint)H0) * rhs_stride_y;
#if defined(MATRIX_B_DEPTH)
// Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
+ rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z;
#else // defined(MATRIX_B_DEPTH)
- rhs_addr += get_global_id(2) * rhs_stride_z;
+ rhs_addr += z * rhs_stride_z;
#endif // defined(MATRIX_B_DEPTH)
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zrhs, 0);
+
// Initialize the accumulators
REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(uint, N0), c, 0); //VEC_DATA_TYPE(uint, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
for(int i = 0; i < k; i += K0)
{
- // Supported cases (M0, K0):
- // 2,4 - 2,8 - 2,16
- // 3,4 - 3,8 - 3,16
- // 4,4 - 4,8 - 4,16
- // 5,4 - 5,8 - 5,16
- // 6,4 - 6,8 - 6,16
// Load values from LHS matrix
- VEC_DATA_TYPE(uchar, K0)
- a0 = VLOAD(K0)(0, lhs_addr + 0 * LHS_STEP_X);
-#if M0 > 1
- VEC_DATA_TYPE(uchar, K0)
- a1 = VLOAD(K0)(0, lhs_addr + 1 * LHS_STEP_X);
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(uchar, K0)
- a2 = VLOAD(K0)(0, lhs_addr + 2 * LHS_STEP_X);
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(uchar, K0)
- a3 = VLOAD(K0)(0, lhs_addr + 3 * LHS_STEP_X);
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(uchar, K0)
- a4 = VLOAD(K0)(0, lhs_addr + 4 * LHS_STEP_X);
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(uchar, K0)
- a5 = VLOAD(K0)(0, lhs_addr + 5 * LHS_STEP_X);
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(uchar, K0)
- a6 = VLOAD(K0)(0, lhs_addr + 6 * LHS_STEP_X);
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(uchar, K0)
- a7 = VLOAD(K0)(0, lhs_addr + 7 * LHS_STEP_X);
-#endif // M0 > 7
+ LOAD_BLOCK(M0, K0, uchar, a, lhs_addr, 0, LHS_STEP_X, zlhs);
// Load values from RHS matrix
- VEC_DATA_TYPE(uchar, K0)
- b0 = VLOAD(K0)(0, rhs_addr + 0 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b1 = VLOAD(K0)(0, rhs_addr + 1 * RHS_STEP_X);
-#if N0 > 2
- VEC_DATA_TYPE(uchar, K0)
- b2 = VLOAD(K0)(0, rhs_addr + 2 * RHS_STEP_X);
-#endif // N0 > 2
-#if N0 > 3
- VEC_DATA_TYPE(uchar, K0)
- b3 = VLOAD(K0)(0, rhs_addr + 3 * RHS_STEP_X);
-#endif // N0 > 3
-#if N0 > 4
- VEC_DATA_TYPE(uchar, K0)
- b4 = VLOAD(K0)(0, rhs_addr + 4 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b5 = VLOAD(K0)(0, rhs_addr + 5 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b6 = VLOAD(K0)(0, rhs_addr + 6 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b7 = VLOAD(K0)(0, rhs_addr + 7 * RHS_STEP_X);
-#endif // N0 > 4
-#if N0 > 8
- VEC_DATA_TYPE(uchar, K0)
- b8 = VLOAD(K0)(0, rhs_addr + 8 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b9 = VLOAD(K0)(0, rhs_addr + 9 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bA = VLOAD(K0)(0, rhs_addr + 10 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bB = VLOAD(K0)(0, rhs_addr + 11 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bC = VLOAD(K0)(0, rhs_addr + 12 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bD = VLOAD(K0)(0, rhs_addr + 13 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bE = VLOAD(K0)(0, rhs_addr + 14 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bF = VLOAD(K0)(0, rhs_addr + 15 * RHS_STEP_X);
-#endif // N0 > 8
+ LOAD_BLOCK(N0, K0, uchar, b, rhs_addr, 0, RHS_STEP_X, zrhs);
- // Accumulate
- ARM_DOT_K0XN0(a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(a7, b, c7);
-#endif // M0 > 7
+ // Partial matrix multiplication M0,N0,K0
+ ARM_MM_K0XN0XM0(M0, N0, K0, a, b, c);
+ // Update address
lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP);
rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP);
}
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(int)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(int)) + (y * (uint)M0 * dst_stride_y);
REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- zout0 = (0 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout0 = min((uint)(DEPTH_GEMM3D - 1), zout0);
- zout0 *= (dst_cross_plane_pad * dst_stride_y);
-#if M0 > 1
- zout1 = (1 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout1 = min((uint)(DEPTH_GEMM3D - 1), zout1);
- zout1 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 1
-#if M0 > 2
- zout2 = (2 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout2 = min((uint)(DEPTH_GEMM3D - 1), zout2);
- zout2 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 2
-#if M0 > 3
- zout3 = (3 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout3 = min((uint)(DEPTH_GEMM3D - 1), zout3);
- zout3 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 3
-#if M0 > 4
- zout4 = (4 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout4 = min((uint)(DEPTH_GEMM3D - 1), zout4);
- zout4 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 4
-#if M0 > 5
- zout5 = (5 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout5 = min((uint)(DEPTH_GEMM3D - 1), zout5);
- zout5 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 5
-#if M0 > 6
- zout6 = (6 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout6 = min((uint)(DEPTH_GEMM3D - 1), zout6);
- zout6 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 6
-#if M0 > 7
- zout7 = (7 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout7 = min((uint)(DEPTH_GEMM3D - 1), zout7);
- zout7 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 7
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
#else // defined(REINTERPRET_OUTPUT_AS_3D)
// Add offset for batched GEMM
- dst_addr += get_global_id(2) * dst_stride_z;
+ dst_addr += z * dst_stride_z;
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
- // Store output block
- VSTORE(N0)
- (CONVERT_SAT(c0, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout0));
-#if M0 > 1
- VSTORE(N0)
- (CONVERT_SAT(c1, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout1));
-#endif // M0 > 1
-#if M0 > 2
- VSTORE(N0)
- (CONVERT_SAT(c2, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout2));
-#endif // M0 > 2
-#if M0 > 3
- VSTORE(N0)
- (CONVERT_SAT(c3, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout3));
-#endif // M0 > 3
-#if M0 > 4
- VSTORE(N0)
- (CONVERT_SAT(c4, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 4 * dst_stride_y + zout4));
-#endif // M0 > 4
-#if M0 > 5
- VSTORE(N0)
- (CONVERT_SAT(c5, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 5 * dst_stride_y + zout5));
-#endif // M0 > 5
-#if M0 > 6
- VSTORE(N0)
- (CONVERT_SAT(c6, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 6 * dst_stride_y + zout6));
-#endif // M0 > 6
-#if M0 > 7
- VSTORE(N0)
- (CONVERT_SAT(c7, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 7 * dst_stride_y + zout7));
-#endif // M0 > 7
+ // Convert and store output block
+ CONVERT_STORE_BLOCK(M0, N0, int, c, dst_addr, dst_stride_y, zout);
#undef LHS_BLOCK_SIZE
#undef LHS_OFFSET_X
@@ -1839,256 +1675,13 @@ __kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
#undef RHS_OFFSET_X
#undef RHS_STEP_X
}
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices with QASYMM8 data type using the dot8 instruction.
- * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
- * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
- *
- * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
- * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (i.e. -DV0=2)
- * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
- * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
- * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
- * @note Only the following configurations of M0, N0 and K0 are currently supported:
- * - M0 = 2, 3, 4, 5, 6, 7, 8
- * - N0 = 2, 3, 4, 8, 16
- * - K0 = 2, 3, 4, 8, 16
- *
- * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
- *
- * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: QASYMM8
- * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
- * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
- * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
- * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
- * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
- * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
- * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
- * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
- * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t_dot8(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
- IMAGE_DECLARATION(dst),
- uint k,
- uint lhs_stride_z,
- uint rhs_stride_z,
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Note: ARM_DOT_K0XN0 is generated with the dot8 instruction
- gemmlowp_mm_reshaped_lhs_nt_rhs_t(lhs_ptr,
- lhs_stride_x,
- lhs_step_x,
- lhs_stride_y,
- lhs_step_y,
- lhs_offset_first_element_in_bytes,
- rhs_ptr,
- rhs_stride_x,
- rhs_step_x,
- rhs_stride_y,
- rhs_step_y,
- rhs_offset_first_element_in_bytes,
- dst_ptr,
- dst_stride_x,
- dst_step_x,
- dst_stride_y,
- dst_step_y,
- dst_offset_first_element_in_bytes,
- k,
- lhs_stride_z,
- rhs_stride_z,
- dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- );
-}
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K)
#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(K)
-#define CONCAT(a, b) a##b
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#define ARM_DOT1(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar3)0), (uchar4)(b, (uchar3)0), c); \
- })
-#define ARM_DOT2(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar2)0), (uchar4)(b, (uchar2)0), c); \
- })
-#define ARM_DOT3(a, b, c) \
- ({ \
- ARM_DOT((uchar4)(a, (uchar)0), (uchar4)(b, (uchar)0), c); \
- })
-#define ARM_DOT4(a, b, c) \
- ({ \
- ARM_DOT(a, b, c); \
- })
-#define ARM_DOT8(a, b, c) \
- ({ \
- ARM_DOT4((a.lo), (b.lo), c); \
- ARM_DOT4((a.hi), (b.hi), c); \
- })
-#define ARM_DOT16(a, b, c) \
- ({ \
- ARM_DOT8((a.lo), (b.lo), c); \
- ARM_DOT8((a.hi), (b.hi), c); \
- })
-
-#else // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#define ARM_DOT1(a, b, c) \
- ({ \
- c += (uint)a.s0 * b.s0; \
- })
-#define ARM_DOT2(a, b, c) \
- ({ \
- ARM_DOT1(a, b, c); \
- c += (uint)a.s1 * b.s1; \
- })
-#define ARM_DOT3(a, b, c) \
- ({ \
- ARM_DOT2(a, b, c); \
- c += (uint)a.s2 * b.s2; \
- })
-#define ARM_DOT4(a, b, c) \
- ({ \
- ARM_DOT3(a, b, c); \
- c += (uint)a.s3 * b.s3; \
- })
-#define ARM_DOT8(a, b, c) \
- ({ \
- ARM_DOT4((a.lo), (b.lo), c); \
- ARM_DOT4((a.hi), (b.hi), c); \
- })
-#define ARM_DOT16(a, b, c) \
- ({ \
- ARM_DOT8((a.lo), (b.lo), c); \
- ARM_DOT8((a.hi), (b.hi), c); \
- })
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#if N0 == 2
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- })
-#elif N0 == 3 // N0 == 3
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- })
-#elif N0 == 4 // N0 == 4
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- })
-#elif N0 == 8 // N0 == 8
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##4), (c.s4)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##5), (c.s5)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##6), (c.s6)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##7), (c.s7)); \
- })
-#elif N0 == 16 // N0 == 16
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##4), (c.s4)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##5), (c.s5)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##6), (c.s6)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##7), (c.s7)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##8), (c.s8)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##9), (c.s9)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##A), (c.sA)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##B), (c.sB)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##C), (c.sC)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##D), (c.sD)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##E), (c.sE)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##F), (c.sF)); \
- })
-#else // N0 not supported
-#error "N0 value not supported"
-#endif // N0 conditions
-
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
- * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
+ * The RHS matrix is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
*
* @note The number of columns of LHS matrix must be passed at compile time using -DK (i.e. -DK=64)
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (i.e. -DN0=8, -DK0=4).
@@ -2186,63 +1779,12 @@ __kernel void gemmlowp_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
rhs_offset += z * rhs_stride_z;
#endif // defined(MATRIX_B_DEPTH)
- REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zrhs, 0);
#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- zin0 = (0 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin0 = min((uint)(DEPTH_GEMM3D - 1), zin0);
- zin0 *= (lhs_cross_plane_pad * lhs_stride_y);
-#if M0 > 1
- zin1 = (1 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin1 = min((uint)(DEPTH_GEMM3D - 1), zin1);
- zin1 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 1
-#if M0 > 2
- zin2 = (2 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin2 = min((uint)(DEPTH_GEMM3D - 1), zin2);
- zin2 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 2
-#if M0 > 3
- zin3 = (3 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin3 = min((uint)(DEPTH_GEMM3D - 1), zin3);
- zin3 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 3
-#if M0 > 4
- zin4 = (4 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin4 = min((uint)(DEPTH_GEMM3D - 1), zin4);
- zin4 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 4
-#if M0 > 5
- zin5 = (5 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin5 = min((uint)(DEPTH_GEMM3D - 1), zin5);
- zin5 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 5
-#if M0 > 6
- zin6 = (6 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin6 = min((uint)(DEPTH_GEMM3D - 1), zin6);
- zin6 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 6
-#if M0 > 7
- zin7 = (7 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zin7 = min((uint)(DEPTH_GEMM3D - 1), zout7);
- zin7 *= (lhs_cross_plane_pad * lhs_stride_y);
-#endif // M0 > 7
+ // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply lhs_stride_z by DEPTH_GEMM3D
@@ -2260,112 +1802,14 @@ __kernel void gemmlowp_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
for(int i = 0; i < K; i += K0)
{
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
// Load values from LHS matrix
- VEC_DATA_TYPE(uchar, K0)
- a0 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0);
-#if M0 > 1
- VEC_DATA_TYPE(uchar, K0)
- a1 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1);
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(uchar, K0)
- a2 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2);
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(uchar, K0)
- a3 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3);
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(uchar, K0)
- a4 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4);
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(uchar, K0)
- a5 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5);
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(uchar, K0)
- a6 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6);
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(uchar, K0)
- a7 = VLOAD(K0)(0, lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7);
-#endif // M0 > 7
+ LOAD_BLOCK(M0, K0, uchar, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
// Load values from RHS matrix
- VEC_DATA_TYPE(uchar, K0)
- b0 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 0 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b1 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 1 * RHS_STEP_X);
-#if N0 > 2
- VEC_DATA_TYPE(uchar, K0)
- b2 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 2 * RHS_STEP_X);
-#endif // N0 > 2
-#if N0 > 3
- VEC_DATA_TYPE(uchar, K0)
- b3 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 3 * RHS_STEP_X);
-#endif // N0 > 3
-#if N0 > 4
- VEC_DATA_TYPE(uchar, K0)
- b4 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 4 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b5 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 5 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b6 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 6 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b7 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 7 * RHS_STEP_X);
-#endif // N0 > 4
-#if N0 > 8
- VEC_DATA_TYPE(uchar, K0)
- b8 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 8 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- b9 = VLOAD(K0)(0, rhs_ptr + rhs_offset + 9 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bA = VLOAD(K0)(0, rhs_ptr + rhs_offset + 10 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bB = VLOAD(K0)(0, rhs_ptr + rhs_offset + 11 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bC = VLOAD(K0)(0, rhs_ptr + rhs_offset + 12 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bD = VLOAD(K0)(0, rhs_ptr + rhs_offset + 13 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bE = VLOAD(K0)(0, rhs_ptr + rhs_offset + 14 * RHS_STEP_X);
- VEC_DATA_TYPE(uchar, K0)
- bF = VLOAD(K0)(0, rhs_ptr + rhs_offset + 15 * RHS_STEP_X);
-#endif // N0 > 8
+ LOAD_BLOCK(N0, K0, uchar, b, rhs_ptr, rhs_offset, RHS_STEP_X, zrhs);
- // Accumulate
- ARM_DOT_K0XN0(K0, a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(K0, a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(K0, a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(K0, a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(K0, a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(K0, a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(K0, a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(K0, a7, b, c7);
-#endif // M0 > 7
+ // Partial matrix multiplication M0,N0,K0
+ ARM_MM_K0XN0XM0(M0, N0, K0, a, b, c);
lhs_offset += K0;
rhs_offset += N0 * RHS_STEP_X * RHS_STEP_LOOP;
@@ -2376,60 +1820,8 @@ __kernel void gemmlowp_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
// The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- zout0 = (0 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout0 = min((uint)(DEPTH_GEMM3D - 1), zout0);
- zout0 *= (dst_cross_plane_pad * dst_stride_y);
-#if M0 > 1
- zout1 = (1 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout1 = min((uint)(DEPTH_GEMM3D - 1), zout1);
- zout1 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 1
-#if M0 > 2
- zout2 = (2 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout2 = min((uint)(DEPTH_GEMM3D - 1), zout2);
- zout2 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 2
-#if M0 > 3
- zout3 = (3 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout3 = min((uint)(DEPTH_GEMM3D - 1), zout3);
- zout3 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 3
-#if M0 > 4
- zout4 = (4 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout4 = min((uint)(DEPTH_GEMM3D - 1), zout4);
- zout4 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 4
-#if M0 > 5
- zout5 = (5 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout5 = min((uint)(DEPTH_GEMM3D - 1), zout5);
- zout5 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 5
-#if M0 > 6
- zout6 = (6 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout6 = min((uint)(DEPTH_GEMM3D - 1), zout6);
- zout6 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 6
-#if M0 > 7
- zout7 = (7 + (uint)(y * (uint)M0)) / (uint)HEIGHT_GEMM3D;
- zout7 = min((uint)(DEPTH_GEMM3D - 1), zout7);
- zout7 *= (dst_cross_plane_pad * dst_stride_y);
-#endif // M0 > 7
+ CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
// Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
// multiply dst_stride_z by DEPTH_GEMM3D
@@ -2442,37 +1834,8 @@ __kernel void gemmlowp_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#endif // defined(REINTERPRET_OUTPUT_AS_3D)
- // Store output block
- VSTORE(N0)
- (CONVERT_SAT(c0, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout0));
-#if M0 > 1
- VSTORE(N0)
- (CONVERT_SAT(c1, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout1));
-#endif // M0 > 1
-#if M0 > 2
- VSTORE(N0)
- (CONVERT_SAT(c2, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout2));
-#endif // M0 > 2
-#if M0 > 3
- VSTORE(N0)
- (CONVERT_SAT(c3, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout3));
-#endif // M0 > 3
-#if M0 > 4
- VSTORE(N0)
- (CONVERT_SAT(c4, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 4 * dst_stride_y + zout4));
-#endif // M0 > 4
-#if M0 > 5
- VSTORE(N0)
- (CONVERT_SAT(c5, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 5 * dst_stride_y + zout5));
-#endif // M0 > 5
-#if M0 > 6
- VSTORE(N0)
- (CONVERT_SAT(c6, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 6 * dst_stride_y + zout6));
-#endif // M0 > 6
-#if M0 > 7
- VSTORE(N0)
- (CONVERT_SAT(c7, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 7 * dst_stride_y + zout7));
-#endif // M0 > 7
+ // Convert and store output block
+ CONVERT_STORE_BLOCK(M0, N0, int, c, dst_addr, dst_stride_y, zout);
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
diff --git a/src/core/CL/cl_kernels/helpers.h b/src/core/CL/cl_kernels/helpers.h
index e39dbc3e94..756c906e66 100644
--- a/src/core/CL/cl_kernels/helpers.h
+++ b/src/core/CL/cl_kernels/helpers.h
@@ -43,6 +43,8 @@
#define GPU_ARCH_MIDGARD 0x100
#define GPU_ARCH_BIFROST 0x200
+#define CONCAT(a, b) a##b
+
#define EXPAND(x) x
#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
diff --git a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.cpp b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.cpp
index a8c1704d91..050b792c4e 100644
--- a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.cpp
@@ -214,7 +214,6 @@ void CLGEMMLowpMatrixMultiplyReshapedKernel::configure(const ICLTensor *input0,
std::string kernel_name("gemmlowp_mm_reshaped_");
kernel_name += lhs_info.transpose ? "lhs_t_" : "lhs_nt_";
kernel_name += rhs_info.transpose ? "rhs_t" : "rhs_nt";
- kernel_name += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
@@ -222,6 +221,8 @@ void CLGEMMLowpMatrixMultiplyReshapedKernel::configure(const ICLTensor *input0,
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
+ _config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
+ _config_id += "_";
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
diff --git a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp
index 923b9529fa..3ddeeaee41 100644
--- a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp
@@ -229,6 +229,8 @@ void CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::configure(const ICLTensor *i
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
+ _config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
+ _config_id += "_";
_config_id += (_reinterpret_input_as_3d ? "3di_" : "");
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += support::cpp11::to_string(output->info()->dimension(1));