aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorzhenglin <zhenglin.li@arm.com>2018-01-03 12:14:13 +0800
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:42:33 +0000
commit19e9142604edce6efbf117181578f8f408008134 (patch)
tree14751c98d4f7bad673209ec709310bdcd5a3e064
parentfef6dae9c2cfe1003ab2abe3a41255e849b1b5eb (diff)
downloadComputeLibrary-19e9142604edce6efbf117181578f8f408008134.tar.gz
APPBROWSER-369: Rewrite the gemm.cs with the new common code
Change-Id: I9db00c846fa7fc223a22ab775025dfdea587ade8 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/114957 Reviewed-by: Joel Liang <joel.liang@arm.com> Reviewed-by: Pablo Tello <pablo.tello@arm.com> Tested-by: Jenkins <bsgcomp@arm.com>
-rw-r--r--[-rwxr-xr-x]src/core/GLES_COMPUTE/cs_shaders/gemm.cs865
-rwxr-xr-xsrc/core/GLES_COMPUTE/cs_shaders/helpers_cs.h6
2 files changed, 286 insertions, 585 deletions
diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
index 17260b6bd2..4beb3ad5d2 100755..100644
--- a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
@@ -22,94 +22,64 @@
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
-#include "helpers.h"
+#include "helpers_cs.h"
-#if defined(DATA_TYPE_FP32)
-#define LOAD8(r, name, offset) \
- r.x = LOAD4(name, offset); \
- r.y = LOAD4(name, offset + uint(1))
-
-#define LOAD16(r, name, offset) \
- r.x = LOAD4(name, offset); \
- r.y = LOAD4(name, offset + uint(1)); \
- r.z = LOAD4(name, offset + uint(2)); \
- r.w = LOAD4(name, offset + uint(3))
-
-#define STORE16(name, offset, r) \
- STORE4(name, offset, r.x); \
- STORE4(name, offset + uint(1), r.y); \
- STORE4(name, offset + uint(2), r.z); \
- STORE4(name, offset + uint(3), r.w)
+#if defined(DATA_TYPE_FP16)
+precision mediump float;
+#endif // DATA_TYPE_FP16
+#if defined(DATA_TYPE_FP32)
#ifdef GEMM_TRANSPOSE1xW
-BUFFER_DECLARATION(src, 1, float, readonly);
-BUFFER_DECLARATION(dst, 2, float, writeonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src);
- IMAGE_PARAM_DECLARATION(dst);
-};
-
/** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix
*
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_attrs The attributes of the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_attrs The attributes of the destination matrix
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes src_attrs;
+ ImageAttributes dst_attrs;
+};
+TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
+TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
+
void main(void)
{
/* Compute address for Matrix B - source */
- Image src = CONVERT_TO_IMAGE_STRUCT(src);
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
- uint dst_addr_in_bytes = (gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst.stride_y + dst.offset_first_element_in_bytes) >> 2;
- vec4 b0;
- LOAD16(b0, src, offset(src, 0, 0));
- STORE16(dst, dst_addr_in_bytes, b0);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y);
+
+ vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter);
+ VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, b0);
}
#endif /* GEMM_TRANSPOSE1xW */
#ifdef GEMM_INTERLEAVE4x4
-BUFFER_DECLARATION(src, 1, float, readonly);
-BUFFER_DECLARATION(dst, 2, float, writeonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src);
- IMAGE_PARAM_DECLARATION(dst);
-};
-
/** This OpenGLES kernel reshapes the input matrix interleaving the values
*
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_attrs The attributes of the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_attrs The attributes of the destination matrix
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes src_attrs;
+ ImageAttributes dst_attrs;
+};
+TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
+TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
+
void main(void)
{
/* Compute source and destination addresses */
- Image src = CONVERT_TO_IMAGE_STRUCT(src);
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int i;
int j;
@@ -118,102 +88,80 @@ void main(void)
{
for(j = 0; j < 4; ++j)
{
- float res = LOAD4(src, offset(src, i, j));
- uint ofset0 = CURRENT_OFFSET(dst) + uint(i * 4 + j);
- STORE4(dst, ofset0, res);
+ float res = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, j));
+ STORE(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, (i * 4 + j)), res);
}
}
}
#endif /* GEMM_INTERLEAVE4x4 */
#ifdef GEMM_ACCUMULATE_BIASES
-BUFFER_DECLARATION(accum, 1, float, restrict);
-BUFFER_DECLARATION(biases, 2, float, readonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(accum);
- VECTOR_PARAM_DECLARATION(biases);
-};
-
/** This kernel accumulates each row with the biases vector
*
- * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
- * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
- * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
- * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
- * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
- * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
+ * @param[in] accum_attrs The attributes of the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
+ * @param[in] biases_attrs The attributes of the biases tensor
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes accum_attrs;
+ VectorAttributes biases_attrs;
+};
+TENSOR_DECLARATION(1, accumBuffer, float, accum_ptr, accum_shift, 2, restrict);
+TENSOR_DECLARATION(2, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly);
+
void main(void)
{
- Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
+ ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
+ VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
for(int i = 0; i < 16; ++i)
{
- float accum_value = LOAD4(accum, CURRENT_OFFSET(accum) + uint(i));
- float biases_value = LOAD4(biases, CURRENT_OFFSET(biases) + uint(i));
+ float accum_value = LOAD(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i));
+ float biases_value = LOAD(biases_ptr, TENSOR_OFFSET_ADVANCE(biases_iter, i));
accum_value = biases_value + accum_value;
// Store result in the accummulate buffer
- STORE4(accum, CURRENT_OFFSET(accum) + uint(i), accum_value);
+ STORE(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i), accum_value);
}
}
#endif /* GEMM_ACCUMULATE_BIASES */
#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */
-BUFFER_DECLARATION(src0, 1, float, readonly);
-BUFFER_DECLARATION(src1, 2, float, readonly);
-BUFFER_DECLARATION(dst, 3, float, writeonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src0);
- IMAGE_PARAM_DECLARATION(src1);
- IMAGE_PARAM_DECLARATION(dst);
-};
-
/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_attrs The attributes of the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_attrs The attributes of the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_attrs The attributes of the destination matrix
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes src0_attrs;
+ ImageAttributes src1_attrs;
+ ImageAttributes dst_attrs;
+};
+TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
+TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
+TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
+
void main()
{
- Image src0 = CONVERT_TO_IMAGE_STRUCT(src0);
- Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
+ ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
/* Compute address for matrix A and B */
- src0.current_offset = (src0.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.y) * uint(src0.stride_y))) >> uint(2);
- src1.current_offset = (src1.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.x) * uint(src1.stride_y))) >> uint(2);
-
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y));
/* Compute end row address for matrix B */
- int end_row_mtx_b = int(src1.current_offset) + int(COLS_B);
+ int end_row_mtx_b = int(TENSOR_OFFSET_ADVANCE(src1_iter, COLS_B));
/* Reset accumulators */
vec4 c00 = vec4(0.0f);
@@ -222,13 +170,11 @@ void main()
vec4 c30 = vec4(0.0f);
// FIXME: loop unrolling really needed for GLES?
- for(; int(src1.current_offset) <= (end_row_mtx_b - 8); src0.current_offset += uint(8), src1.current_offset += uint(8))
+ for(; int(CURRENT_ITEM_OFFSET(src1_iter)) <= (end_row_mtx_b - 8); TENSOR_ITERATOR_ADVANCE(src0_iter, 8), TENSOR_ITERATOR_ADVANCE(src1_iter, 8))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
- vec4 a0;
- vec4 b0;
- LOAD16(a0, src0, src0.current_offset);
- LOAD16(b0, src1, src1.current_offset);
+ vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
+ vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
@@ -236,8 +182,8 @@ void main()
c30 += vec4(a0.w) * b0;
/* Load values from matrix A (interleaved) and matrix B (transposed) */
- LOAD16(a0, src0, src0.current_offset + uint(4));
- LOAD16(b0, src1, src1.current_offset + uint(4));
+ a0 = VLOAD4(vec4, src0_ptr, TENSOR_OFFSET_ADVANCE(src0_iter, 4));
+ b0 = VLOAD4(vec4, src1_ptr, TENSOR_OFFSET_ADVANCE(src1_iter, 4));
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
@@ -245,13 +191,11 @@ void main()
c30 += vec4(a0.w) * b0;
}
- for(; int(src1.current_offset) < end_row_mtx_b; src0.current_offset += uint(4), src1.current_offset += uint(4))
+ for(; int(CURRENT_ITEM_OFFSET(src1_iter)) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE(src0_iter, 4), TENSOR_ITERATOR_ADVANCE(src1_iter, 4))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
- vec4 a0;
- vec4 b0;
- LOAD16(a0, src0, src0.current_offset);
- LOAD16(b0, src1, src1.current_offset);
+ vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
+ vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
@@ -266,62 +210,49 @@ void main()
c30 = c30 * vec4(ALPHA);
/* Store 4x4 block */
- STORE16(dst, offset(dst, 0, 0), c00);
- STORE16(dst, offset(dst, 0, 1), c10);
- STORE16(dst, offset(dst, 0, 2), c20);
- STORE16(dst, offset(dst, 0, 3), c30);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30);
}
#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
#ifdef GEMM_MM_FLOATING_POINT
-BUFFER_DECLARATION(src0, 1, float, readonly);
-BUFFER_DECLARATION(src1, 2, float, readonly);
-BUFFER_DECLARATION(dst, 3, float, writeonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src0);
- IMAGE_PARAM_DECLARATION(src1);
- IMAGE_PARAM_DECLARATION(dst);
-};
-
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_attrs The attributes of the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_attrs The attributes of the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_attrs The attributes of the destination matrix
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes src0_attrs;
+ ImageAttributes src1_attrs;
+ ImageAttributes dst_attrs;
+};
+TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
+TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
+TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
+
void main()
{
- Image src0 = CONVERT_TO_IMAGE_STRUCT(src0);
- Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
+ ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
- src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)) >> uint(2);
- src1.current_offset = (src1_offset_first_element_in_bytes + uint(idx * 4)) >> uint(2);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4);
/* Compute end row address for matrix A */
- int end_row_vec_a = int(src0.current_offset) + ((COLS_A * 4) >> 2);
+ int end_row_vec_a = int(TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, COLS_A * 4));
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
@@ -335,27 +266,21 @@ void main()
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- for(; int(src0.current_offset) <= (end_row_vec_a - 2); src0.current_offset += uint(2), src1.current_offset += uint((2 * int(src1_stride_y)) >> 2))
+ for(; int(CURRENT_ITEM_OFFSET(src0_iter)) <= (end_row_vec_a - 2); TENSOR_ITERATOR_ADVANCE(src0_iter, 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y))
{
- vec2 a0;
- LOAD8(a0, src0, src0.current_offset);
+ vec2 a0 = VLOAD2_CURRENT_ITEM(vec2, src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec2 a1;
- LOAD8(a1, src0, src0.current_offset + (src0_stride_y >> uint(2)));
+ vec2 a1 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec2 a2;
- LOAD8(a2, src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2)));
+ vec2 a2 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec2 a3;
- LOAD8(a3, src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2)));
+ vec2 a3 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 b0;
- vec4 b1;
- LOAD16(b0, src1, src1.current_offset);
- LOAD16(b1, src1, src1.current_offset + (src1_stride_y >> uint(2)));
+ vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
+ vec4 b1 = VLOAD4(vec4, src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1));
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
@@ -373,26 +298,22 @@ void main()
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
- for(; int(src0.current_offset) < end_row_vec_a; src0.current_offset += uint(1), src1.current_offset += uint(int(src1_stride_y) >> 2))
+ for(; int(CURRENT_ITEM_OFFSET(src0_iter)) < end_row_vec_a; TENSOR_ITERATOR_ADVANCE(src0_iter, 1), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y))
{
// Load values from matrix A
- float a0;
- a0 = LOAD4(src0, src0.current_offset);
+ float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1;
- a1 = LOAD4(src0, src0.current_offset + ((uint(1) * src0_stride_y) >> uint(2)));
+ float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
+ //float a1 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2;
- a2 = LOAD4(src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2)));
+ float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3;
- a3 = LOAD4(src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2)));
+ float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 b0;
- LOAD16(b0, src1, src1.current_offset);
+ vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
acc0 += b0 * vec4(a0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -408,122 +329,98 @@ void main()
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
- STORE16(dst, offset(dst, 0, 0), acc0);
+ VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 = acc1 * vec4(ALPHA);
- STORE16(dst, offset(dst, 0, 1), acc1);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 = acc2 * vec4(ALPHA);
- STORE16(dst, offset(dst, 0, 2), acc2);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 = acc3 * vec4(ALPHA);
- STORE16(dst, offset(dst, 0, 3), acc3);
+ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_MATRIXADDITION
-BUFFER_DECLARATION(src, 1, float, readonly);
-BUFFER_DECLARATION(dst, 2, float, restrict);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src);
- IMAGE_PARAM_DECLARATION(dst);
-};
-
/** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @attention The beta's value need to be passed at compile time using BETA
*
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_attrs The attributes of the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_attrs The attributes of the destination matrix
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes src_attrs;
+ ImageAttributes dst_attrs;
+};
+TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
+TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
+
void main(void)
{
/* Compute source and destination addresses */
- Image src = CONVERT_TO_IMAGE_STRUCT(src);
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
/* Load values from A x B */
- vec4 alpha_ab;
- vec4 c;
- vec4 out1;
-
- LOAD16(alpha_ab, dst, dst.current_offset);
- LOAD16(c, src, src.current_offset);
+ vec4 alpha_ab = VLOAD4_CURRENT_ITEM(vec4, dst_ptr, dst_iter);
+ vec4 c = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter);
/* Computes alpha * axb + beta * c */
- out1 = alpha_ab + vec4(float(BETA) * c);
+ vec4 out1 = alpha_ab + vec4(float(BETA) * c);
/* Store final result in axb matrix */
- STORE16(dst, dst.current_offset, out1);
+ VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, out1);
}
#endif /* GEMM_MATRIXADDITION */
-#elif defined(DATA_TYPE_FP16)
-precision mediump float;
-#ifdef GEMM_MM_FLOATING_POINT
-#if defined(MM_PROCESS_4X)
-BUFFER_DECLARATION(src0, 1, uint, readonly);
-BUFFER_DECLARATION(src1, 2, uvec2, readonly);
-BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src0);
- IMAGE_PARAM_DECLARATION(src1);
- IMAGE_PARAM_DECLARATION(dst);
-};
+#elif defined(DATA_TYPE_FP16)
-/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+#ifdef GEMM_MM_FLOATING_POINT
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A(src0) and matrix B(src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_ptr Pointer to the source matrix.Supported data types: F16
+ * @param[in] src0_attrs The attributes of the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_attrs The attributes of the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_attrs The attributes of the destination matrix
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes src0_attrs;
+ ImageAttributes src1_attrs;
+ ImageAttributes dst_attrs;
+};
+
+#if defined(MM_PROCESS_4X)
+TENSOR_DECLARATION(1, src0Buffer, uint, src0_ptr, src0_shift, 2, readonly);
+TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly);
+TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
+
void main()
{
- Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
- Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
- Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
+ ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
- src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
/* Compute end row address for matrix A */
- uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+ uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
@@ -537,42 +434,22 @@ void main()
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- for(; int(src0.current_offset) < int(end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
+ for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a - uint(2));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y))
{
- uint packed_a;
- vec2 a0;
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
- a0 = vec2(unpackHalf2x16(packed_a));
+ vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec2 a1;
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
- a1 = vec2(unpackHalf2x16(packed_a));
+ vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec2 a2;
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
- a2 = vec2(unpackHalf2x16(packed_a));
+ vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec2 a3;
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
- a3 = vec2(unpackHalf2x16(packed_a));
+ vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uvec2 packed_b0;
- uvec2 packed_b1;
- vec4 b0;
- vec4 b1;
-
- GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0);
- GC_LOAD1_2D_OFFSET(packed_b1, src1, 0, 1);
-
- b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
- b1 = vec4(unpackHalf2x16(packed_b1.x), unpackHalf2x16(packed_b1.y));
+ vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
+ vec4 b1 = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1));
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
@@ -590,38 +467,20 @@ void main()
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
- for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y)
+ for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y))
{
- uint packed_a0;
- vec2 a0;
-
- GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
- a0 = vec2(unpackHalf2x16(packed_a0));
+ vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec2 a1;
-
- GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 1);
- a1 = vec2(unpackHalf2x16(packed_a0));
+ vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec2 a2;
-
- GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 2);
- a2 = vec2(unpackHalf2x16(packed_a0));
+ vec a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec2 a3;
-
- GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 3);
- a3 = vec2(unpackHalf2x16(packed_a0));
+ vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uvec2 packed_b0;
- vec4 b0;
-
- GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0);
-
- b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
+ vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
acc0 += b0 * (a0.x);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -638,71 +497,35 @@ void main()
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
- uvec2 packed_d;
- packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
+ STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
+ STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
+ STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */
-BUFFER_DECLARATION(src0, 1, uvec4, readonly);
-BUFFER_DECLARATION(src1, 2, uvec2, readonly);
-BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src0);
- IMAGE_PARAM_DECLARATION(src1);
- IMAGE_PARAM_DECLARATION(dst);
-};
+TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly);
+TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly);
+TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
-/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
- *
- * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
void main()
{
- Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
- Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
- Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
+ ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
- src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
/* Compute end row address for matrix A */
- uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+ uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
@@ -717,48 +540,29 @@ void main()
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
+ for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a - uint(16));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
- uvec4 packed_a;
- vec4 a0[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
- a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 a1[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
- a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 a2[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
- a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 a3[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
- a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uvec2 packed_b;
- vec4 b;
+ vec4 b;
for(int i = 0; i < 8; i++)
{
int j = i >> 2;
int k = i % 4;
- GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
-
- b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+ b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc0 += b * vec4(a0[j][k]);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -773,39 +577,21 @@ void main()
}
}
- for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
+ for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
- uvec4 packed_a;
- vec4 a0[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
- a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 a1[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
- a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 a2[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
- a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 a3[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
- a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
+ vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- uvec2 packed_b;
- vec4 b;
+ vec4 b;
int leftover = COLS_A % 8;
@@ -814,9 +600,7 @@ void main()
int j = i >> 2;
int k = i % 4;
- GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
-
- b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
+ b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc0 += b * vec4(a0[j][k]);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
@@ -834,71 +618,35 @@ void main()
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
- uvec2 packed_d;
- packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
+ STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
+ STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
+ STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
-#elif defined(MM_PROCESS_8X) /* PROCESS_4X */
-BUFFER_DECLARATION(src0, 1, uvec4, readonly);
-BUFFER_DECLARATION(src1, 2, uvec4, readonly);
-BUFFER_DECLARATION(dst, 3, uvec4, writeonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(src0);
- IMAGE_PARAM_DECLARATION(src1);
- IMAGE_PARAM_DECLARATION(dst);
-};
+#elif defined(MM_PROCESS_8X) /* PROCESS_8X */
+TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly);
+TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly);
+TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
-/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
- *
- * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
void main()
{
- Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
- Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
- Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+ ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
+ ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
- src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
/* Compute end row address for matrix A */
- uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+ uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc[2];
@@ -906,44 +654,29 @@ void main()
acc[0] = vec4(0.0f);
acc[1] = vec4(0.0f);
- for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
+ for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a - uint(16));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
- uvec4 packed_a;
- vec4 a[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
- a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
-
- uvec4 packed_b;
- vec4 b[2];
+ vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
+ vec4 b[2];
for(int i = 0; i < 8; i++)
{
int j = i >> 2;
int k = i % 4;
- GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
-
- b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
- b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
+ b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc[0] += b[0] * vec4(a[j][k]);
acc[1] += b[1] * vec4(a[j][k]);
}
}
- for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
+ for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * uint(2)), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
{
- uvec4 packed_a;
- vec4 a[2];
-
- GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
- a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
- a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
-
- uvec4 packed_b;
- vec4 b[2];
+ vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
+ vec4 b[2];
int leftover = COLS_A % 8;
@@ -952,10 +685,7 @@ void main()
int j = i >> 2;
int k = i % 4;
- GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
-
- b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
- b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
+ b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
acc[0] += b[0] * vec4(a[j][k]);
acc[1] += b[1] * vec4(a[j][k]);
@@ -966,102 +696,67 @@ void main()
acc[0] = acc[0] * vec4(ALPHA);
acc[1] = acc[1] * vec4(ALPHA);
- uvec4 packed_d;
- packed_d = uvec4(packHalf2x16(acc[0].xy), packHalf2x16(acc[0].zw), packHalf2x16(acc[1].xy), packHalf2x16(acc[1].zw));
- GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+ STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc);
}
-#endif /* PROCESS_4X */
+#endif /* PROCESS_8X */
#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_ACCUMULATE_BIASES
#if defined(ACCUM_PROCESS_4X)
-BUFFER_DECLARATION(accum, 1, uvec2, restrict);
-BUFFER_DECLARATION(biases, 2, uvec2, readonly);
-
-layout(std140) uniform shader_params
-{
- IMAGE_PARAM_DECLARATION(accum);
- VECTOR_PARAM_DECLARATION(biases);
-};
-
/** This kernel accumulates each row with the biases vector
*
- * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
- * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
- * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
- * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
- * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
- * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
+ * @param[in] accum_attrs The attributes of the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
+ * @param[in] biases_attrs The attributes of the biases tensor
*/
+SHADER_PARAMS_DECLARATION
+{
+ ImageAttributes accum_attrs;
+ VectorAttributes biases_attrs;
+};
+
+TENSOR_DECLARATION(1, accumBuffer, uvec2, accum_ptr, accum_shift, 3, restrict);
+TENSOR_DECLARATION(2, biasesBuffer, uvec2, biases_ptr, biases_shift, 3, readonly);
+
void main(void)
{
- Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
- Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
+ ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
+ VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
- vec4 u[2];
- uvec2 packed_s[2];
- GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
- GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
- u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
- u[1] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
+ vec4 u[2];
+ u[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter);
+ u[1] = LOAD_UNPACK4_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
vec4 tmp;
- tmp = u[0] + u[1];
- packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw));
- GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
+ tmp = u[0] + u[1];
+ STORE_PACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter, tmp);
}
-#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
-BUFFER_DECLARATION(accum, 1, uvec4, restrict);
-BUFFER_DECLARATION(biases, 2, uvec4, readonly);
-
-layout(std140) uniform shader_params
+#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_8X */
+SHADER_PARAMS_DECLARATION
{
- IMAGE_PARAM_DECLARATION(accum);
- VECTOR_PARAM_DECLARATION(biases);
+ ImageAttributes accum_attrs;
+ VectorAttributes biases_attrs;
};
-/** This kernel accumulates each row with the biases vector
- *
- * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
- * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
- * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
- * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
- * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
- * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
+TENSOR_DECLARATION(1, accumBuffer, uvec4, accum_ptr, accum_shift, 4, restrict);
+TENSOR_DECLARATION(2, biasesBuffer, uvec4, biases_ptr, biases_shift, 4, readonly);
+
void main(void)
{
- Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
- Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
-
- vec4 u[2];
- vec4 v[2];
- uvec4 packed_s[2];
- GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
- GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
-
- u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
- u[1] = vec4(unpackHalf2x16(packed_s[0].z), unpackHalf2x16(packed_s[0].w));
+ ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
+ VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
- v[0] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
- v[1] = vec4(unpackHalf2x16(packed_s[1].z), unpackHalf2x16(packed_s[1].w));
+ vec4 u[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter);
+ vec4 v[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(biases_ptr, bias_iter);
vec4 r[2];
- r[0] = u[0] + v[0];
- r[1] = u[1] + v[1];
- packed_s[0] = uvec4(packHalf2x16(r[0].xy), packHalf2x16(r[0].zw), packHalf2x16(r[1].xy), packHalf2x16(r[1].zw));
- GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
+ r[0] = u[0] + v[0];
+ r[1] = u[1] + v[1];
+ STORE_PACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter, r);
}
-#endif /* ACCUM_PROCESS_4X */
+#endif /* ACCUM_PROCESS_8X */
#endif /* GEMM_ACCUMULATE_BIASES */
-#else /* DATA_TYPE_FP32 */
+#else /* DATA_TYPE_FP16 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
diff --git a/src/core/GLES_COMPUTE/cs_shaders/helpers_cs.h b/src/core/GLES_COMPUTE/cs_shaders/helpers_cs.h
index 404b46a89d..3fb0e238ae 100755
--- a/src/core/GLES_COMPUTE/cs_shaders/helpers_cs.h
+++ b/src/core/GLES_COMPUTE/cs_shaders/helpers_cs.h
@@ -222,6 +222,9 @@ ImageIterator update_image_from_tensor3D_iter_offset(uint element_shift, uint of
#define TENSOR3D_OFFSET(tensor_iter, x, y, z) \
uint(tensor3D_offset_in_bytes(tensor_iter, int(x), int(y), int(z)) >> tensor_iter.element_shift)
+#define TENSOR_OFFSET_ADVANCE(tensor_iter, n) \
+ uint((tensor_iter.current_offset_in_bytes >> tensor_iter.element_shift) + int(n))
+
#define TENSOR_OFFSET_ADVANCE_IN_BYTES(tensor_iter, n) \
uint((tensor_iter.current_offset_in_bytes + int(n)) >> tensor_iter.element_shift)
@@ -231,6 +234,9 @@ ImageIterator update_image_from_tensor3D_iter_offset(uint element_shift, uint of
#define CURRENT_ITEM_OFFSET_IN_BYTES(tensor_iter) \
uint(tensor_iter.current_offset_in_bytes)
+#define TENSOR_ITERATOR_ADVANCE(tensor_iter, n) \
+ tensor_iter.current_offset_in_bytes += (int(n) << tensor_iter.element_shift)
+
#define TENSOR_ITERATOR_ADVANCE_IN_BYTES(tensor_iter, n) \
tensor_iter.current_offset_in_bytes += int(n)