aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/Pooling3dLayer.cpp
blob: 2e8f3a0b9202b0789c9fb2717b945e606a6f17fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Copyright (c) 2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "Pooling3dLayer.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/validation/Helpers.h"

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
using namespace arm_compute::misc::shape_calculator;

template <typename T>
SimpleTensor<T> pooling_3d_layer_internal(const SimpleTensor<T> &src, const Pooling3dLayerInfo &pool3d_info, SimpleTensor<uint32_t> *indices)
{
    TensorShape     pooled_shape = compute_pool3d_shape(src.shape(), pool3d_info);
    SimpleTensor<T> dst{ pooled_shape, src.data_type(), 1 };

    if(indices != nullptr)
    {
        *indices = SimpleTensor<uint32_t> { pooled_shape, DataType::U32, 1 };
    }

    const int idx_channel = 0;
    const int idx_width   = 1;
    const int idx_height  = 2;
    const int idx_depth   = 3;
    const int idx_batch   = 4;

    const int pool_size_width  = pool3d_info.is_global_pooling ? src.shape()[idx_width] : pool3d_info.pool_size.width;
    const int pool_size_height = pool3d_info.is_global_pooling ? src.shape()[idx_height] : pool3d_info.pool_size.height;
    const int pool_size_depth  = pool3d_info.is_global_pooling ? src.shape()[idx_depth] : pool3d_info.pool_size.depth;

    const int pool_stride_width  = static_cast<int>(pool3d_info.stride.width);
    const int pool_stride_height = static_cast<int>(pool3d_info.stride.height);
    const int pool_stride_depth  = static_cast<int>(pool3d_info.stride.depth);

    const int pad_left  = static_cast<int>(pool3d_info.padding.left);
    const int pad_top   = static_cast<int>(pool3d_info.padding.top);
    const int pad_front = static_cast<int>(pool3d_info.padding.front);

    const int pad_right  = static_cast<int>(pool3d_info.padding.right);
    const int pad_bottom = static_cast<int>(pool3d_info.padding.bottom);
    const int pad_back   = static_cast<int>(pool3d_info.padding.back);

    const int num_channels = static_cast<int>(src.shape()[idx_channel]);
    const int num_batches  = static_cast<int>(src.shape()[idx_batch]);

    ARM_COMPUTE_ERROR_ON(num_channels != static_cast<int>(dst.shape()[idx_channel]));
    ARM_COMPUTE_ERROR_ON(num_batches != static_cast<int>(dst.shape()[idx_batch]));

    const int w_src = static_cast<int>(src.shape()[idx_width]);
    const int h_src = static_cast<int>(src.shape()[idx_height]);
    const int d_src = static_cast<int>(src.shape()[idx_depth]);
    const int w_dst = static_cast<int>(dst.shape()[idx_width]);
    const int h_dst = static_cast<int>(dst.shape()[idx_height]);
    const int d_dst = static_cast<int>(dst.shape()[idx_depth]);

    const bool exclude_padding = pool3d_info.exclude_padding;

    const int height_stride_src = num_channels * w_src;
    const int depth_stride_src  = height_stride_src * h_src;
    const int batch_stride_src  = depth_stride_src * d_src;
    const int height_stride_dst = num_channels * w_dst;
    const int depth_stride_dst  = height_stride_dst * h_dst;
    const int batch_stride_dst  = depth_stride_dst * d_dst;

    for(int b = 0; b < num_batches; ++b)
    {
        const int batch_offset_dst = b * batch_stride_dst;
        const int batch_offset_src = b * batch_stride_src;
        for(int c = 0; c < num_channels; ++c)
        {
            for(int d = 0; d < d_dst; ++d)
            {
                const int depth_offset_dst = d * depth_stride_dst;
                for(int h = 0; h < h_dst; ++h)
                {
                    const int height_offset_dst = h * height_stride_dst;
                    for(int w = 0; w < w_dst; ++w)
                    {
                        int wstart = w * pool_stride_width - pad_left;
                        int hstart = h * pool_stride_height - pad_top;
                        int dstart = d * pool_stride_depth - pad_front;
                        int wend   = std::min(wstart + pool_size_width, w_src + pad_right);
                        int hend   = std::min(hstart + pool_size_height, h_src + pad_bottom);
                        int dend   = std::min(dstart + pool_size_depth, d_src + pad_back);

                        // this may not be equal to pool_w * pool_h * pool_d because of
                        // DimensionRoundingType choice (CEIL)
                        int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);

                        // limit [start, end) to [0, w_src)
                        wstart = std::max(wstart, 0);
                        hstart = std::max(hstart, 0);
                        dstart = std::max(dstart, 0);
                        wend   = std::min(wend, w_src);
                        hend   = std::min(hend, h_src);
                        dend   = std::min(dend, d_src);

                        auto max_val = -std::numeric_limits<T>::infinity();
                        int  max_index{ 0 };
                        T    avg_val = static_cast<T>(0.f);
                        T    l2_val  = static_cast<T>(0.f);

                        if(exclude_padding)
                        {
                            pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
                        }

                        for(int z = dstart; z < dend; ++z)
                        {
                            const int depth_offset_src = z * depth_stride_src;
                            for(int y = hstart; y < hend; ++y)
                            {
                                const int height_offset_src = y * height_stride_src;
                                for(int x = wstart; x < wend; ++x)
                                {
                                    const auto val = static_cast<T>(
                                                         src[batch_offset_src + depth_offset_src + height_offset_src + x * num_channels + c]);
                                    if(val > max_val)
                                    {
                                        max_val   = val;
                                        max_index = coord2index(src.shape(), Coordinates(c, x, y, z, 0));
                                    }

                                    avg_val += val;
                                    l2_val += val * val;
                                }
                            }
                        }

                        avg_val /= pool_size;
                        l2_val = static_cast<T>(std::sqrt(l2_val / pool_size));

                        int dst_index = batch_offset_dst + depth_offset_dst + height_offset_dst + w * num_channels + c;
                        switch(pool3d_info.pool_type)
                        {
                            case PoolingType::MAX:
                                dst[dst_index] = static_cast<T>(max_val);
                                break;
                            case PoolingType::AVG:
                                dst[dst_index] = static_cast<T>(avg_val);
                                break;
                            case PoolingType::L2:
                                dst[dst_index] = static_cast<T>(l2_val);
                                break;
                            default:
                                ARM_COMPUTE_ERROR("Pooling Type should be either MAX, AVG or L2");
                        }

                        if(indices != nullptr)
                        {
                            (*indices)[dst_index] = max_index;
                        }
                    }
                }
            }
        }
    }

    return dst;
}

template SimpleTensor<float> pooling_3d_layer(const SimpleTensor<float> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices);
template SimpleTensor<half> pooling_3d_layer(const SimpleTensor<half> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices);

template <typename T>
SimpleTensor<T> pooling_3d_layer(const SimpleTensor<T> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices)
{
    ARM_COMPUTE_UNUSED(output_qinfo);
    return pooling_3d_layer_internal<T>(src, pool3d_info, indices);
}

template <>
SimpleTensor<int8_t> pooling_3d_layer<int8_t>(const SimpleTensor<int8_t> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices)
{
    SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
    SimpleTensor<float> dst_tmp = pooling_3d_layer_internal<float>(src_tmp, pool3d_info, indices);
    return convert_to_asymmetric<int8_t>(dst_tmp, output_qinfo);
}

template <>
SimpleTensor<uint8_t> pooling_3d_layer<uint8_t>(const SimpleTensor<uint8_t> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices)
{
    SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
    SimpleTensor<float> dst_tmp = pooling_3d_layer_internal<float>(src_tmp, pool3d_info, indices);
    return convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
}

} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute