aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/HOGDescriptor.cpp
blob: e00beaf5d79f640c327676f29fe7f0846388e819 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 * Copyright (c) 2017-2019 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "HOGDescriptor.h"

#include "Derivative.h"
#include "Magnitude.h"
#include "Phase.h"

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
template <typename T>
void hog_orientation_compute(const SimpleTensor<T> &mag, const SimpleTensor<T> &phase, std::vector<T> &bins, const HOGInfo &hog_info)
{
    const Size2D &cell_size = hog_info.cell_size();
    const size_t  num_bins  = hog_info.num_bins();

    float phase_scale = (PhaseType::SIGNED == hog_info.phase_type() ? num_bins / 360.0f : num_bins / 180.0f);
    phase_scale *= (PhaseType::SIGNED == hog_info.phase_type() ? 360.0f / 255.0f : 1.0f);

    int row_idx = 0;
    for(size_t yc = 0; yc < cell_size.height; ++yc)
    {
        for(size_t xc = 0; xc < cell_size.width; xc++)
        {
            const float mag_value   = mag[(row_idx + xc)];
            const float phase_value = phase[(row_idx + xc)] * phase_scale + 0.5f;
            const float w1          = phase_value - floor(phase_value);

            // The quantised phase is the histogram index [0, num_bins - 1]
            // Check limit of histogram index. If hidx == num_bins, hidx = 0
            const auto hidx = static_cast<unsigned int>(phase_value) % num_bins;

            // Weighted vote between 2 bins
            bins[hidx] += mag_value * (1.0f - w1);
            bins[(hidx + 1) % num_bins] += mag_value * w1;
        }

        row_idx += cell_size.width;
    }
}

template <typename T>
void hog_block_normalization_compute(SimpleTensor<T> &block, SimpleTensor<T> &desc, const HOGInfo &hog_info, uint32_t block_idx)
{
    const int         num_bins_per_block = desc.num_channels();
    const HOGNormType norm_type          = hog_info.normalization_type();
    const Coordinates id                 = index2coord(desc.shape(), block_idx);

    float sum = 0.0f;

    // Calculate sum
    for(int i = 0; i < num_bins_per_block; ++i)
    {
        const float val = block[i];
        sum += (norm_type == HOGNormType::L1_NORM) ? std::fabs(val) : val * val;
    }

    // Calculate normalization scale
    float scale = 1.0f / (std::sqrt(sum) + num_bins_per_block * 0.1f);

    if(norm_type == HOGNormType::L2HYS_NORM)
    {
        // Reset sum
        sum = 0.0f;
        for(int i = 0; i < num_bins_per_block; ++i)
        {
            float val = block[i] * scale;

            // Clip scaled input_value if over l2_hyst_threshold
            val = fmin(val, hog_info.l2_hyst_threshold());
            sum += val * val;
            block[i] = val;
        }

        // We use the same constants of OpenCV
        scale = 1.0f / (std::sqrt(sum) + 1e-3f);
    }

    for(int i = 0; i < num_bins_per_block; ++i)
    {
        block[i] *= scale;
        reinterpret_cast<float *>(desc(id))[i] = block[i];
    }
}
} // namespace

template <typename T, typename U, typename V>
void hog_orientation_binning(const SimpleTensor<T> &mag, const SimpleTensor<U> &phase, SimpleTensor<V> &hog_space, const HOGInfo &hog_info)
{
    const Size2D &cell_size = hog_info.cell_size();

    const size_t num_bins     = hog_info.num_bins();
    const size_t shape_width  = hog_space.shape().x() * hog_info.cell_size().width;
    const size_t shape_height = hog_space.shape().y() * hog_info.cell_size().height;

    TensorShape cell_shape(cell_size.width, cell_size.height);

    SimpleTensor<V> mag_cell(cell_shape, DataType::F32);
    SimpleTensor<V> phase_cell(cell_shape, DataType::F32);

    int cell_idx = 0;
    int y_offset = 0;

    // Traverse shape
    for(auto sy = cell_size.height; sy <= shape_height; sy += cell_size.height)
    {
        int x_offset = 0;
        for(auto sx = cell_size.width; sx <= shape_width; sx += cell_size.width)
        {
            int row_idx  = 0;
            int elem_idx = 0;

            // Traverse cell
            for(auto y = 0u; y < cell_size.height; ++y)
            {
                for(auto x = 0u; x < cell_size.width; ++x)
                {
                    int shape_idx        = x + row_idx + x_offset + y_offset;
                    mag_cell[elem_idx]   = mag[shape_idx];
                    phase_cell[elem_idx] = phase[shape_idx];
                    elem_idx++;
                }

                row_idx += shape_width;
            }

            // Partition magnitude values into bins based on phase values
            std::vector<V> bins(num_bins);
            hog_orientation_compute(mag_cell, phase_cell, bins, hog_info);

            for(size_t i = 0; i < num_bins; ++i)
            {
                hog_space[cell_idx * num_bins + i] = bins[i];
            }

            x_offset += cell_size.width;
            cell_idx++;
        }

        y_offset += (cell_size.height * shape_width);
    }
}

template <typename T>
void hog_block_normalization(SimpleTensor<T> &desc, const SimpleTensor<T> &hog_space, const HOGInfo &hog_info)
{
    const Size2D  cells_per_block        = hog_info.num_cells_per_block();
    const Size2D  cells_per_block_stride = hog_info.num_cells_per_block_stride();
    const Size2D &block_size             = hog_info.block_size();
    const Size2D &block_stride           = hog_info.block_stride();
    const size_t  num_bins               = hog_info.num_bins();

    const size_t shape_width          = hog_space.shape().x() * hog_info.cell_size().width;
    const size_t shape_height         = hog_space.shape().y() * hog_info.cell_size().height;
    const size_t num_bins_per_block_x = cells_per_block.width * num_bins;

    // Tensor representing single block
    SimpleTensor<T> block(TensorShape{ 1u, 1u }, DataType::F32, cells_per_block.area() * num_bins);

    uint32_t block_idx      = 0;
    int      block_y_offset = 0;

    // Traverse shape
    for(auto sy = block_size.height; sy <= shape_height; sy += block_stride.height)
    {
        int block_x_offset = 0;
        for(auto sx = block_size.width; sx <= shape_width; sx += block_stride.width)
        {
            int cell_y_offset = 0;
            int elem_idx      = 0;

            // Traverse block
            for(auto y = 0u; y < cells_per_block.height; ++y)
            {
                for(auto x = 0u; x < num_bins_per_block_x; ++x)
                {
                    int idx         = x + cell_y_offset + block_x_offset + block_y_offset;
                    block[elem_idx] = hog_space[idx];
                    elem_idx++;
                }

                cell_y_offset += hog_space.shape().x() * num_bins;
            }

            // Normalize block and write to descriptor
            hog_block_normalization_compute(block, desc, hog_info, block_idx);

            block_x_offset += cells_per_block_stride.width * num_bins;
            block_idx++;
        }

        block_y_offset += cells_per_block_stride.height * num_bins * hog_space.shape().x();
    }
}

template <typename T, typename U>
SimpleTensor<T> hog_descriptor(const SimpleTensor<U> &src, BorderMode border_mode, U constant_border_value, const HOGInfo &hog_info)
{
    SimpleTensor<int16_t> grad_x;
    SimpleTensor<int16_t> grad_y;

    // Create tensor info for HOG descriptor
    TensorInfo      desc_info(hog_info, src.shape().x(), src.shape().y());
    SimpleTensor<T> desc(desc_info.tensor_shape(), DataType::F32, desc_info.num_channels());

    // Create HOG space tensor (num_cells_x, num_cells_y)
    TensorShape hog_space_shape(src.shape().x() / hog_info.cell_size().width,
                                src.shape().y() / hog_info.cell_size().height);

    // For each cell a histogram with a num_bins is created
    TensorInfo      info_hog_space(hog_space_shape, hog_info.num_bins(), DataType::F32);
    SimpleTensor<T> hog_space(info_hog_space.tensor_shape(), DataType::F32, info_hog_space.num_channels());

    // Calculate derivative
    std::tie(grad_x, grad_y) = derivative<int16_t>(src, border_mode, constant_border_value, GradientDimension::GRAD_XY);

    // For each cell create histogram based on magnitude and phase
    hog_orientation_binning(magnitude(grad_x, grad_y, MagnitudeType::L2NORM),
                            phase(grad_x, grad_y, hog_info.phase_type()),
                            hog_space,
                            hog_info);

    // Normalize histograms based on block size
    hog_block_normalization(desc, hog_space, hog_info);

    return desc;
}

template void hog_orientation_binning(const SimpleTensor<int16_t> &mag, const SimpleTensor<uint8_t> &phase, SimpleTensor<float> &hog_space, const HOGInfo &hog_info);
template void hog_block_normalization(SimpleTensor<float> &desc, const SimpleTensor<float> &hog_space, const HOGInfo &hog_info);
template SimpleTensor<float> hog_descriptor(const SimpleTensor<uint8_t> &src, BorderMode border_mode, uint8_t constant_border_value, const HOGInfo &hog_info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute