aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/dynamic_fusion/operators/MulFixture.h
blob: f02aa5e36a1d49effd3d76caa46fedb020475560 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright (c) 2023-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_MULFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_MULFIXTURE_H

#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h"

#include "tests/framework/Fixture.h"
#include "tests/framework/Macros.h"
#include "tests/Globals.h"
#include "tests/validation/reference/PixelWiseMultiplication.h"

using namespace arm_compute::experimental::dynamic_fusion;

namespace arm_compute
{
namespace test
{
namespace validation
{
/* We use a separate test fixture for Multiplication op instead of reusing ElementwiseBinaryFixture to avoid exposing
 * the internal enum ElementwiseOp to the public utils/TypePrinters.h as required by the data test case macros
 * to print the test data.
 */
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DynamicFusionMulValidationFixture : public framework::Fixture
{
public:
    void setup(const TensorShape &shape0,
               const TensorShape &shape1,
               const TensorShape &shape2,
               DataType           data_type,
               bool               is_inplace,
               bool               fuse_two_ops = false)
    {
        _data_type  = data_type;
        _is_inplace = is_inplace;
        _fuse       = fuse_two_ops;
        ARM_COMPUTE_ERROR_ON_MSG(_fuse && shape2.total_size() == 0, "No shape2 provided for fusion of two ops.");
        ARM_COMPUTE_ERROR_ON_MSG(_fuse && _is_inplace, "In place for fusing case not supported yet.");
        _target    = compute_target(shape0, shape1, shape2);
        _reference = compute_reference(shape0, shape1, shape2);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        library->fill_tensor_uniform(tensor, i);
    }

    TensorType compute_target(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2)
    {
        // Create a new workload sketch
        auto              cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
        auto              context        = GpuWorkloadContext{&cl_compile_ctx};
        GpuWorkloadSketch sketch{&context};

        // Fuse first multiplication op
        ITensorInfo *lhs_info = context.create_tensor_info(TensorInfo(shape0, 1, _data_type));
        ITensorInfo *rhs_info = context.create_tensor_info(TensorInfo(shape1, 1, _data_type));
        ITensorInfo *dst_info = context.create_tensor_info();

        ITensorInfo *rhs_info_fuse = nullptr;

        ITensorInfo *ans_info = FunctionType::create_op(sketch, lhs_info, rhs_info);

        if (_fuse)
        {
            rhs_info_fuse          = context.create_tensor_info(TensorInfo(shape2, 1, _data_type));
            ITensorInfo *ans2_info = FunctionType::create_op(sketch, ans_info, rhs_info_fuse);
            GpuOutput::create_op(sketch, ans2_info, dst_info);
        }
        else
        {
            GpuOutput::create_op(sketch, ans_info, dst_info);
        }

        // Configure runtime
        ClWorkloadRuntime runtime;
        runtime.configure(sketch);

        // (Important) Allocate auxiliary tensor memory if there are any
        for (auto &data : runtime.get_auxiliary_tensors())
        {
            CLTensor     *tensor      = std::get<0>(data);
            TensorInfo    info        = std::get<1>(data);
            AuxMemoryInfo aux_mem_req = std::get<2>(data);
            tensor->allocator()->init(info, aux_mem_req.alignment);
            tensor->allocator()->allocate(); // Use ACL allocated memory
        }

        // Construct user tensors
        TensorType t_lhs{};
        TensorType t_rhs{};
        TensorType t_rhs_fuse{};
        TensorType t_dst{};

        // Initialize user tensors
        t_lhs.allocator()->init(*lhs_info);
        t_rhs.allocator()->init(*rhs_info);
        t_dst.allocator()->init(*dst_info);
        if (_fuse)
        {
            t_rhs_fuse.allocator()->init(*rhs_info_fuse);
        }

        // Allocate and fill user tensors
        // Instead of using ACL allocator, the user can choose to import memory into the tensors
        t_lhs.allocator()->allocate();
        t_rhs.allocator()->allocate();
        t_dst.allocator()->allocate();
        if (_fuse)
        {
            t_rhs_fuse.allocator()->allocate();
        }

        fill(AccessorType(t_lhs), 0);
        fill(AccessorType(t_rhs), 1);
        if (_fuse)
        {
            fill(AccessorType(t_rhs_fuse), 2);
        }

        // Run runtime
        if (_fuse)
        {
            runtime.run({&t_lhs, &t_rhs, &t_rhs_fuse, &t_dst});
        }
        else
        {
            runtime.run({&t_lhs, &t_rhs, &t_dst});
        }

        return t_dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &shape0, const TensorShape &shape1, const TensorShape &shape2)
    {
        // Create reference
        SimpleTensor<T> ref_lhs{shape0, _data_type, 1, QuantizationInfo()};
        SimpleTensor<T> ref_rhs{shape1, _data_type, 1, QuantizationInfo()};
        SimpleTensor<T> ref_rhs_fuse{shape2, _data_type, 1, QuantizationInfo()};

        // Fill reference
        fill(ref_lhs, 0);
        fill(ref_rhs, 1);
        SimpleTensor<T> ref_dst = reference::pixel_wise_multiplication<T, T, T>(
            ref_lhs, ref_rhs, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_UP, _data_type,
            QuantizationInfo());
        if (_fuse)
        {
            fill(ref_rhs_fuse, 2);
            SimpleTensor<T> ref_dst_fuse = reference::pixel_wise_multiplication<T, T, T>(
                ref_dst, ref_rhs_fuse, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_UP, _data_type,
                QuantizationInfo());
            return ref_dst_fuse;
        }
        return ref_dst;
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};
    DataType        _data_type{};
    bool            _is_inplace{false};
    bool            _fuse{false};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DynamicFusionMulOneOpValidationFixture
    : public DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(const TensorShape &shape0, DataType data_type, bool is_inplace)
    {
        DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(
            shape0, shape0, TensorShape(), data_type, is_inplace);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DynamicFusionMulBroadcastValidationFixture
    : public DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(const TensorShape &shape0, const TensorShape &shape1, DataType data_type, bool is_inplace)
    {
        DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(
            shape0, shape1, TensorShape(), data_type, is_inplace);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DynamicFusionMulTwoOpsValidationFixture
    : public DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(const TensorShape &shape0,
               const TensorShape &shape1,
               const TensorShape &shape2,
               DataType           data_type,
               bool               is_inplace,
               bool               fuse_two_ops)
    {
        DynamicFusionMulValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(
            shape0, shape1, shape2, data_type, is_inplace, fuse_two_ops);
    }
};

} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_OPERATORS_MULFIXTURE_H