aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/MatMulKernelFixture.h
blob: 7d0b1a40a9b826cd3856b1450d3c2f1d77cac653 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/*
 * Copyright (c) 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE
#define ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE

#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

#include "tests/CL/CLAccessor.h"
#include "tests/CL/Helper.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/GEMMLowp.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/ReshapeLayer.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::opencl::kernels;

template <typename T, typename KernelType>
class MatMulKernelValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool pretranspose_a, bool pretranspose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type)
    {
        // For brevity, the input shapes are assumed to be not-transposed for both Lhs and Rhs matrices.
        QuantizationInfo lhs_q_info;
        QuantizationInfo rhs_q_info;
        QuantizationInfo dst_q_info;

        if(is_data_type_quantized(data_type))
        {
            const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
            const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());

            std::mt19937                           generator(library->seed());
            std::uniform_real_distribution<float>  distribution_float(-5.0f, 3.0f);
            std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);

            const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
            const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]

            const int32_t offset_lhs = distribution_t(generator);
            const int32_t offset_rhs = distribution_t(generator);

            lhs_q_info = QuantizationInfo(scale_lhs, offset_lhs);
            rhs_q_info = QuantizationInfo(scale_rhs, offset_rhs);

            const int m = shape_a.y();
            const int n = shape_b.x();
            const int k = shape_a.x();

            dst_q_info = calculate_mat_mul_dst_q_info(lhs_q_info, rhs_q_info, m, n, k, data_type);
        }

        if(pretranspose_a)
        {
            permute(shape_a, PermutationVector(1U, 0U));
        }

        if(pretranspose_b)
        {
            permute(shape_b, PermutationVector(1U, 0U));
        }

        _device_supports_export_to_cl_image = image2d_from_buffer_supported(CLKernelLibrary::get().get_device());

        if(!export_rhs_to_cl_image || _device_supports_export_to_cl_image)
        {
            _target    = compute_target(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, M0, N0, K0, export_rhs_to_cl_image, data_type, lhs_q_info, rhs_q_info, dst_q_info);
            _reference = compute_reference(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, data_type, lhs_q_info, rhs_q_info, dst_q_info);
        }
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
    {
        switch(tensor.data_type())
        {
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(lo), float(hi) };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(lo, hi);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    template <typename U, typename D>
    void fill_constant(U &&tensor, D value)
    {
        library->fill_tensor_value(tensor, value);
    }

    CLTensor compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, const int M0, const int N0, const int K0,
                            bool export_rhs_to_cl_image, DataType data_type, const QuantizationInfo &lhs_q_info, const QuantizationInfo &rhs_q_info, const QuantizationInfo &dst_q_info)
    {
        CLSynthetizeOperator<KernelType> matMul{};
        MatMulKernelInfo                 matmul_info;
        matmul_info.adj_lhs                = pretranspose_a;
        matmul_info.adj_rhs                = pretranspose_b;
        matmul_info.m0                     = M0;
        matmul_info.n0                     = N0;
        matmul_info.k0                     = K0;
        matmul_info.export_rhs_to_cl_image = export_rhs_to_cl_image;

        // Create tensors
        CLTensor a   = create_tensor<CLTensor>(shape_a, data_type, 1, lhs_q_info);
        CLTensor b   = create_tensor<CLTensor>(shape_b, data_type, 1, rhs_q_info);
        CLTensor dst = create_tensor<CLTensor>(output_shape, data_type, 1, dst_q_info);

        matMul.configure(a.info(), b.info(), dst.info(), matmul_info);
        ARM_COMPUTE_ASSERT(a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        // Allocate tensors
        a.allocator()->allocate();
        b.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // Fill tensors
        fill(CLAccessor(a), 0);
        fill(CLAccessor(b), 1);

        // Compute matMul kernel
        ITensorPack tensors_pack({ { ACL_SRC_0, &a },
            { ACL_SRC_1, &b },
            { ACL_DST, &dst }
        });
        matMul.run(tensors_pack);

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, DataType data_type,
                                      const QuantizationInfo &lhs_q_info, const QuantizationInfo &rhs_q_info, const QuantizationInfo &dst_q_info)
    {
        // We collapse dimensions > 3 onto dimension 3, i.e. 5D+ tensors will look like 4D
        // This is necessary unless we choose to extend gemm reference for 5D+ tensors
        TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
        TensorShape shape_a_collapsed      = shape_a.collapsed_from(Window::DimZ);
        TensorShape shape_b_collapsed      = shape_b.collapsed_from(Window::DimZ);

        // Create reference
        SimpleTensor<T> a{ shape_a_collapsed, data_type, 1, lhs_q_info };
        SimpleTensor<T> b{ shape_b_collapsed, data_type, 1, rhs_q_info };
        SimpleTensor<T> c{ output_shape_collapsed, data_type, 1, dst_q_info };

        // Fill reference
        fill(a, 0);
        fill(b, 1);

        /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
           therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
           in order to be able to call reference implementation that works with (B x M x K) input.
           Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */

        // Define transposed shapes
        TensorShape a_transposed_shape(a.shape());
        a_transposed_shape.set(0, a.shape().y());
        a_transposed_shape.set(1, a.shape().x());

        TensorShape b_transposed_shape(b.shape());
        b_transposed_shape.set(0, b.shape().y());
        b_transposed_shape.set(1, b.shape().x());

        // Define transposed tensors
        SimpleTensor<T> a_transposed{ a_transposed_shape, data_type };
        SimpleTensor<T> b_transposed{ b_transposed_shape, data_type };

        // pretranspose a if necessary
        if(pretranspose_a)
        {
            a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
        }

        // pretranspose b if necessary
        if(pretranspose_b)
        {
            b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
        }

        // Use transposed tensors if boolean enabled else use original tensors
        SimpleTensor<T> result = gemm_reference<T>((pretranspose_a) ? a_transposed : a, (pretranspose_b) ? b_transposed : b, c);

        // We reshape the gemm output back if the tensor is high dimensional
        if(output_shape_collapsed != output_shape)
        {
            result = reference::reshape_layer(result, output_shape);
        }

        return result;
    }

    template <typename U = T>
    typename std::enable_if < std::is_same<U, float>::value || std::is_same<U, half>::value, SimpleTensor<U >>::type gemm_reference(SimpleTensor<U> &a, SimpleTensor<U> &b, SimpleTensor<U> &c)
    {
        // Setting beta to 0 will effectively disable C for the
        // computation of the reference: alpha * A * B + 0 * C
        return reference::gemm<U>(a, b, c, 1.0f, 0.f);
    }

    template <typename U = T>
    typename std::enable_if < std::is_same<U, int8_t>::value || std::is_same<U, uint8_t>::value, SimpleTensor<U >>::type gemm_reference(SimpleTensor<U> &a, SimpleTensor<U> &b, SimpleTensor<U> &c)
    {
        const UniformQuantizationInfo aq = a.quantization_info().uniform();
        const UniformQuantizationInfo bq = b.quantization_info().uniform();
        const UniformQuantizationInfo cq = c.quantization_info().uniform();

        const SimpleTensor<int32_t> result = reference::gemmlowp_matrix_multiply_core<int32_t, U, U>(a, b, c.shape(), -aq.offset, -bq.offset);

        std::vector<int32_t> gemmlowp_multipliers{ 1 };
        std::vector<int32_t> gemmlowp_shifts{ 1 };
        const int            gemmlowp_offset = cq.offset;
        const float          scale           = aq.scale * bq.scale / cq.scale;

        quantization::calculate_quantized_multiplier(scale, &gemmlowp_multipliers[0], &gemmlowp_shifts[0]);
        constexpr int32_t gemmlowp_min_bound = std::numeric_limits<int32_t>::min();
        constexpr int32_t gemmlowp_max_bound = std::numeric_limits<int32_t>::max();

        SimpleTensor<int> bias{ c.shape(), DataType::S32 };
        fill_constant(bias, static_cast<int32_t>(0));

        const SimpleTensor<U> final_result = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, U>(result, bias,
                                                                                                               gemmlowp_multipliers, gemmlowp_shifts, gemmlowp_offset, gemmlowp_min_bound, gemmlowp_max_bound);
        return final_result;
    }

    CLTensor        _target{};
    SimpleTensor<T> _reference{};
    bool            _device_supports_export_to_cl_image{ true };
};

} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE */