aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/MatMulFixture.h
blob: 2e79612a3773a40211a74af0b2874d8c2d1c0cc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/*
 * Copyright (c) 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H

#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/utils/quantization/AsymmHelpers.h"
#include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT
#include "tests/framework/Fixture.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/GEMMLowp.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/ReshapeLayer.h"
#include <limits>
#include <random>
#include <type_traits>

namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulGenericValidationFixture : public framework::Fixture
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs,
               Settings settings, QuantizationInfo a_qinfo = QuantizationInfo(), QuantizationInfo b_qinfo = QuantizationInfo(), QuantizationInfo o_qinfo = QuantizationInfo())
    {
        // For brevity, the input shapes are assumed to be not-transposed for both a and b matrices.
        if(transpose_a)
        {
            permute(shape_a, PermutationVector(1U, 0U));
        }
        if(transpose_b)
        {
            permute(shape_b, PermutationVector(1U, 0U));
        }

        _target    = compute_target(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo);
        _reference = compute_reference(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, a_qinfo, b_qinfo, o_qinfo);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
    {
        switch(tensor.data_type())
        {
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(lo), float(hi) };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(lo, hi);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::QASYMM8:
            case DataType::QASYMM8_SIGNED:
            {
                library->fill_tensor_uniform(tensor, i);
                break;
            }
            default:
            {
                ARM_COMPUTE_ERROR("Unsupported data type.");
            }
        }
    }

    TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type,
                              ActivationLayerInfo act_info, int num_extra_runs, const Settings &settings, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo)
    {
        // 1. Create Classes and configure function
        // ----------------------------------------------------
        // Create tensors
        // Configure relevant classes and matmul function
        TensorType a   = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
        TensorType b   = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
        TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);

        FunctionType matmul;

        // Configure MatMulInfo class
        MatMulInfo mm_info;
        mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);

        // Ensure values are dynamic
        a.info()->set_are_values_constant(false);
        b.info()->set_are_values_constant(false);

        // Configure operator
        matmul.configure(&a, &b, &dst, mm_info, settings, act_info);

        // Assertions
        ARM_COMPUTE_ASSERT(a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        // Allocate tensors
        a.allocator()->allocate();
        b.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // For multiple runs.
        for(int i = 0; i < num_extra_runs; i++)
        {
            // Stress dynamic tensors by running multiple times.
            // --------------------------------------------------------
            // Fill tensors with new seed
            // Run function
            const int seed_offset = num_extra_runs * 100;
            fill(AccessorType(a), seed_offset);
            fill(AccessorType(b), seed_offset + 1);

            matmul.run();
        }

        // 2. Final Run for reference comparison
        // --------------------------------------------------------
        // Re-fill tensors same seed as reference run
        // Compute MatMul operation
        fill(AccessorType(a), 2);
        fill(AccessorType(b), 3);

        matmul.run();

        return dst;
    }

    template <typename TT>
    typename std::enable_if < !std::is_integral<TT>::value, SimpleTensor<TT >>::type
                                                                            compute_reference_gemm(const SimpleTensor<TT> &a, const SimpleTensor<TT> &b, const SimpleTensor<TT> &c, float alpha, float beta, const QuantizationInfo &o_qinfo)
    {
        ARM_COMPUTE_UNUSED(o_qinfo);

        return reference::gemm(a, b, c, alpha, beta);
    }

    template <typename TT>
    typename std::enable_if<std::is_integral<TT>::value, SimpleTensor<TT>>::type
                                                                        compute_reference_gemm(const SimpleTensor<TT> &a, const SimpleTensor<TT> &b, const SimpleTensor<TT> &c, float alpha, float beta, const QuantizationInfo &o_qinfo)
    {
        ARM_COMPUTE_UNUSED(alpha, beta);

        const auto aq = a.quantization_info().uniform();
        const auto bq = b.quantization_info().uniform();
        const auto oq = o_qinfo.uniform();

        const auto multiplier = aq.scale * bq.scale / oq.scale;

        int32_t output_multiplier = 0;
        int32_t output_shift      = 0;
        quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
        std::vector<int32_t> output_multipliers{ output_multiplier };
        std::vector<int32_t> output_shifts{ output_shift };

        //The lhs and rhs offsets are negated here to keep the reference aligned with the function implementation where the lhs and rhs offsets are also negated.
        const auto tmp = reference::gemmlowp_matrix_multiply_core<int32_t>(
                             a, b, c.shape(), -aq.offset, -bq.offset);

        auto output = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TT>(
                          tmp, output_multipliers, output_shifts, oq.offset,
                          std::numeric_limits<int32_t>::lowest(), std::numeric_limits<int32_t>::max());
        output.quantization_info(o_qinfo);

        return output;
    }

    SimpleTensor<T> compute_reference(const TensorShape &a_shape, const TensorShape &b_shape, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type,
                                      ActivationLayerInfo act_info, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo)
    {
        // We collapse dimensions > 2 onto dimension 2, i.e. 4D+ tensors will look like 3D
        // This is necessary unless we choose to extend gemm reference for 4D+ tensors
        TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
        TensorShape a_shape_collapsed      = a_shape.collapsed_from(Window::DimZ);
        TensorShape b_shape_collapsed      = b_shape.collapsed_from(Window::DimZ);

        // Create reference
        SimpleTensor<T> a{ a_shape_collapsed, data_type, 1, a_qinfo };
        SimpleTensor<T> b{ b_shape_collapsed, data_type, 1, b_qinfo };
        SimpleTensor<T> c{ output_shape_collapsed, data_type, 1 };

        // Fill reference
        fill(a, 2);
        fill(b, 3);

        /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if transpose_a is set to true, then A is assumed to be (B x K x M),
        therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
        in order to be able to call reference implementation that works with (B x M x K) input.
        Similarly, if transpose_b is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */

        // Define transposed shapes
        TensorShape a_transposed_shape(a.shape());
        a_transposed_shape.set(0, a.shape().y());
        a_transposed_shape.set(1, a.shape().x());

        TensorShape b_transposed_shape(b.shape());
        b_transposed_shape.set(0, b.shape().y());
        b_transposed_shape.set(1, b.shape().x());

        // Define transposed tensors
        SimpleTensor<T> a_transposed{ a_transposed_shape, data_type };
        SimpleTensor<T> b_transposed{ b_transposed_shape, data_type };

        // pretranspose a if necessary
        if(transpose_a)
        {
            a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
        }
        // pretranspose b if necessary
        if(transpose_b)
        {
            b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
        }

        // Setting beta to 0 will effectively disable C for the
        // computation of the reference: alpha * A * B + 0 * C
        // Use transposed tensors if boolean enabled else use original tensors
        auto result = compute_reference_gemm<T>((transpose_a) ? a_transposed : a, (transpose_b) ? b_transposed : b, c, 1.0f, 0.f, o_qinfo);

        result = reference::activation_layer<T>(result, act_info, o_qinfo);

        // We reshape the gemm output back if the tensor is high dimensional
        if(output_shape_collapsed != output_shape)
        {
            result = reference::reshape_layer(result, output_shape);
        }

        return result;
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationFixture : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, ActivationLayerInfo(), 0,
                                                                                                   Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithDynamicTensorsFixture : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class QuantizedMatMulValidationFixture : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs,
               QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
                                                                                                   a_qinfo, b_qinfo, o_qinfo);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithActivationFixture : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithActivationAlphaBetaFixture : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo::ActivationFunction function,
               float alpha_beta)
    {
        ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class QuantizedMatMulValidationWithActivationFixture : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo::ActivationFunction function,
               float alpha_beta, int num_extra_runs,
               QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo)
    {
        ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
                                                                                                   a_qinfo, b_qinfo, o_qinfo);
    }
};

} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H