aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/MatMulFixture.h
blob: ffd12e56d000339624bc31363ea433b54ada050a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
 * Copyright (c) 2023-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H

#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

#include "src/core/utils/quantization/AsymmHelpers.h"
#include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT
#include "tests/framework/Fixture.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/GEMMLowp.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/ReshapeLayer.h"
#include "tests/validation/Validation.h"

#include <limits>
#include <random>
#include <type_traits>

namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulGenericValidationFixture : public framework::Fixture
{
public:
    void setup(TensorShape         shape_a,
               TensorShape         shape_b,
               TensorShape         output_shape,
               bool                transpose_a,
               bool                transpose_b,
               DataType            data_type,
               ActivationLayerInfo act_info,
               int                 num_extra_runs,
               Settings            settings,
               QuantizationInfo    a_qinfo = QuantizationInfo(),
               QuantizationInfo    b_qinfo = QuantizationInfo(),
               QuantizationInfo    o_qinfo = QuantizationInfo())
    {
        // For brevity, the input shapes are assumed to be not-transposed for both a and b matrices.
        if (transpose_a)
        {
            permute(shape_a, PermutationVector(1U, 0U));
        }
        if (transpose_b)
        {
            permute(shape_b, PermutationVector(1U, 0U));
        }

        _target    = compute_target(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info,
                                    num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo);
        _reference = compute_reference(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info,
                                       a_qinfo, b_qinfo, o_qinfo);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
    {
        switch (tensor.data_type())
        {
            case DataType::BFLOAT16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{float(lo), float(hi)};
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{float(lo), float(hi)};
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(lo, hi);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::QASYMM8:
            case DataType::QASYMM8_SIGNED:
            {
                library->fill_tensor_uniform(tensor, i);
                break;
            }
            default:
            {
                ARM_COMPUTE_ERROR("Unsupported data type.");
            }
        }
    }

    virtual TensorType compute_target(const TensorShape  &shape_a,
                                      const TensorShape  &shape_b,
                                      const TensorShape  &output_shape,
                                      bool                transpose_a,
                                      bool                transpose_b,
                                      DataType            data_type,
                                      ActivationLayerInfo act_info,
                                      int                 num_extra_runs,
                                      const Settings     &settings,
                                      QuantizationInfo    a_qinfo,
                                      QuantizationInfo    b_qinfo,
                                      QuantizationInfo    o_qinfo)
    {
        // 1. Create Classes and configure function
        // ----------------------------------------------------
        // Create tensors
        // Configure relevant classes and matmul function
        TensorType a   = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
        TensorType b   = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
        TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);

        FunctionType matmul;

        // Configure MatMulInfo class
        MatMulInfo mm_info;
        mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);

        // Ensure values are dynamic
        a.info()->set_are_values_constant(false);
        b.info()->set_are_values_constant(false);

        // Configure operator
        matmul.configure(&a, &b, &dst, mm_info, settings, act_info);

        // Assertions
        ARM_COMPUTE_ASSERT(a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        // Allocate tensors
        a.allocator()->allocate();
        b.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // For multiple runs.
        for (int i = 0; i < num_extra_runs; i++)
        {
            // Stress dynamic tensors by running multiple times.
            // --------------------------------------------------------
            // Fill tensors with new seed
            // Run function
            const int seed_offset = num_extra_runs * 100;
            fill(AccessorType(a), seed_offset);
            fill(AccessorType(b), seed_offset + 1);

            matmul.run();
        }

        // 2. Final Run for reference comparison
        // --------------------------------------------------------
        // Re-fill tensors same seed as reference run
        // Compute MatMul operation
        fill(AccessorType(a), 2);
        fill(AccessorType(b), 3);

        matmul.run();

        return dst;
    }

    template <typename TT>
    typename std::enable_if < !std::is_integral<TT>::value, SimpleTensor<TT >>::type
                                                                            compute_reference_gemm(const SimpleTensor<TT> &a,
                                                                                                   const SimpleTensor<TT> &b,
                                                                                                   const SimpleTensor<TT> &c,
                                                                                                   float                   alpha,
                                                                                                   float                   beta,
                                                                                                   const QuantizationInfo &o_qinfo)
    {
        ARM_COMPUTE_UNUSED(o_qinfo);

        return reference::gemm(a, b, c, alpha, beta);
    }

    template <typename TT>
    typename std::enable_if<std::is_integral<TT>::value, SimpleTensor<TT>>::type
                                                                        compute_reference_gemm(const SimpleTensor<TT> &a,
                                                                                               const SimpleTensor<TT> &b,
                                                                                               const SimpleTensor<TT> &c,
                                                                                               float                   alpha,
                                                                                               float                   beta,
                                                                                               const QuantizationInfo &o_qinfo)
    {
        ARM_COMPUTE_UNUSED(alpha, beta);

        const auto aq = a.quantization_info().uniform();
        const auto bq = b.quantization_info().uniform();
        const auto oq = o_qinfo.uniform();

        const auto multiplier = aq.scale * bq.scale / oq.scale;

        int32_t output_multiplier = 0;
        int32_t output_shift      = 0;
        quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
        std::vector<int32_t> output_multipliers{output_multiplier};
        std::vector<int32_t> output_shifts{output_shift};

        //The lhs and rhs offsets are negated here to keep the reference aligned with the function implementation where the lhs and rhs offsets are also negated.
        const auto tmp = reference::gemmlowp_matrix_multiply_core<int32_t>(a, b, c.shape(), -aq.offset, -bq.offset);

        auto output = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TT>(
                          tmp, output_multipliers, output_shifts, oq.offset, std::numeric_limits<int32_t>::lowest(),
                          std::numeric_limits<int32_t>::max());
        output.quantization_info(o_qinfo);

        return output;
    }

    SimpleTensor<T> compute_reference(const TensorShape  &a_shape,
                                      const TensorShape  &b_shape,
                                      const TensorShape  &output_shape,
                                      bool                transpose_a,
                                      bool                transpose_b,
                                      DataType            data_type,
                                      ActivationLayerInfo act_info,
                                      QuantizationInfo    a_qinfo,
                                      QuantizationInfo    b_qinfo,
                                      QuantizationInfo    o_qinfo)
    {
        // We collapse dimensions > 2 onto dimension 2, i.e. 4D+ tensors will look like 3D
        // This is necessary unless we choose to extend gemm reference for 4D+ tensors
        TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
        TensorShape a_shape_collapsed      = a_shape.collapsed_from(Window::DimZ);
        TensorShape b_shape_collapsed      = b_shape.collapsed_from(Window::DimZ);

        // Create reference
        SimpleTensor<T> a{a_shape_collapsed, data_type, 1, a_qinfo};
        SimpleTensor<T> b{b_shape_collapsed, data_type, 1, b_qinfo};
        SimpleTensor<T> c{output_shape_collapsed, data_type, 1};

        // Fill reference
        fill(a, 2);
        fill(b, 3);

        /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if transpose_a is set to true, then A is assumed to be (B x K x M),
        therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
        in order to be able to call reference implementation that works with (B x M x K) input.
        Similarly, if transpose_b is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */

        // Define transposed shapes
        TensorShape a_transposed_shape(a.shape());
        a_transposed_shape.set(0, a.shape().y());
        a_transposed_shape.set(1, a.shape().x());

        TensorShape b_transposed_shape(b.shape());
        b_transposed_shape.set(0, b.shape().y());
        b_transposed_shape.set(1, b.shape().x());

        // Define transposed tensors
        SimpleTensor<T> a_transposed{a_transposed_shape, data_type};
        SimpleTensor<T> b_transposed{b_transposed_shape, data_type};

        // pretranspose a if necessary
        if (transpose_a)
        {
            a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
        }
        // pretranspose b if necessary
        if (transpose_b)
        {
            b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
        }

        // Setting beta to 0 will effectively disable C for the
        // computation of the reference: alpha * A * B + 0 * C
        // Use transposed tensors if boolean enabled else use original tensors
        auto result = compute_reference_gemm<T>((transpose_a) ? a_transposed : a, (transpose_b) ? b_transposed : b, c,
                                                1.0f, 0.f, o_qinfo);

        result = reference::activation_layer<T>(result, act_info, o_qinfo);

        // We reshape the gemm output back if the tensor is high dimensional
        if (output_shape_collapsed != output_shape)
        {
            result = reference::reshape_layer(result, output_shape);
        }

        return result;
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};
};

/// TODO: (ONCPUML-1451) The current state of this fixture is interim and a longer-term testing method will be implemented later.
/// @note: Currently we support only a 2x2 test due to the lack of reorder ref. implementation.
template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulFixedFormatFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    TensorType compute_target(const TensorShape  &shape_a,
                              const TensorShape  &shape_b,
                              const TensorShape  &output_shape,
                              bool                transpose_a,
                              bool                transpose_b,
                              DataType            data_type,
                              ActivationLayerInfo act_info,
                              int                 num_extra_runs,
                              const Settings     &settings,
                              QuantizationInfo    a_qinfo,
                              QuantizationInfo    b_qinfo,
                              QuantizationInfo    o_qinfo) override
    {
        // 1. Create Classes and configure function
        // ----------------------------------------------------
        // Create tensors
        // Configure relevant classes and matmul function
        TensorType a   = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
        TensorType b   = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
        TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);

        const auto       weight_tensor_info  = TensorInfo(*b.info());
        const TensorInfo new_tensor_info     = prepare_weights(weight_tensor_info);
        TensorType       weights_transformed = create_tensor<TensorType>(new_tensor_info);

        // Configure MatMulInfo class
        MatMulInfo mm_info;
        mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);

        // Ensure values are dynamic
        a.info()->set_are_values_constant(false);
        b.info()->set_are_values_constant(false);
        weights_transformed.info()->set_are_values_constant(false);

        FunctionType matmul;

        // Configure operator
        matmul.configure(&a, &weights_transformed, &dst, mm_info, settings, act_info);

        // Assertions
        ARM_COMPUTE_ASSERT(a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
        ARM_COMPUTE_ASSERT(weights_transformed.info()->is_resizable());

        // Allocate tensors
        a.allocator()->allocate();
        b.allocator()->allocate();
        dst.allocator()->allocate();
        weights_transformed.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!weights_transformed.info()->is_resizable());

        // For multiple runs.
        for (int i = 0; i < num_extra_runs; i++)
        {
            // Stress dynamic tensors by running multiple times.
            // --------------------------------------------------------
            // Fill tensors with new seed
            // Run function
            const int seed_offset = num_extra_runs * 100;
            this->fill(AccessorType(a), seed_offset);
            this->fill(AccessorType(b), seed_offset + 1);

            matmul.run();
        }

        // 2. Final Run for reference comparison
        // --------------------------------------------------------
        // Re-fill tensors same seed as reference run
        // Compute MatMul operation
        this->fill(AccessorType(a), 2);
        this->fill(AccessorType(b), 3);

        rearrange_data(AccessorType(b), AccessorType(weights_transformed));

        matmul.run();

        return dst;
    }

    void setup(TensorShape         shape_a,
               TensorShape         shape_b,
               TensorShape         output_shape,
               bool                transpose_a,
               bool                transpose_b,
               DataType            data_type,
               ActivationLayerInfo act_info,
               int                 num_extra_runs,
               Settings            settings,
               QuantizationInfo    a_qinfo,
               QuantizationInfo    b_qinfo,
               QuantizationInfo    o_qinfo)
    {
        if (CPUInfo::get().has_bf16())
        {
            MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
                shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings,
                a_qinfo, b_qinfo, o_qinfo);
        }
    }

private:
    TensorInfo prepare_weights(const TensorInfo tensor_info)
    {
        const DataLayout data_layout = tensor_info.data_layout();
        ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS);
        const DataType    data_type    = tensor_info.data_type();
        const TensorShape tensor_shape = tensor_info.tensor_shape();
        const int         H = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
        const int         W = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
        ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS);

        arm_compute::Strides strides_in_bytes = tensor_info.strides_in_bytes();
        strides_in_bytes.set(1, 32);
        strides_in_bytes.set(2, 32);

        const size_t offset_first_element_in_bytes = tensor_info.offset_first_element_in_bytes();
        const size_t total_size_in_bytes           = 32;

        const TensorShape TS(H, W);

        TensorInfo new_tensor_info = tensor_info;
        new_tensor_info.init(TS, tensor_info.num_channels(), data_type, strides_in_bytes, offset_first_element_in_bytes,
                             total_size_in_bytes);

        return new_tensor_info;
    }

    void rearrange_data(const AccessorType src, AccessorType dst)
    {
        const TensorShape src_tensor_shape = src.shape();
        const DataLayout  data_layout      = src.data_layout();
        ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS);
        const unsigned int O =
            src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES)]; // N=O
        const unsigned int H =
            src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
        const unsigned int W =
            src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
        const unsigned int I =
            src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)]; // C=I
        ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(I == 1 && O == 1, framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(src.num_elements() <= dst.num_elements(), framework::LogLevel::ERRORS);

        const T *src_ptr = reinterpret_cast<const T *>(src.data());
        T       *dst_ptr = reinterpret_cast<T *>(dst.data());

        // rearrange indexes for 2x2 input and weight
        int dst_idx[] = {0, 4, 1, 5};
        for (int i = 0; i < 4; i++)
        {
            dst_ptr[dst_idx[i]] = src_ptr[i];
        }
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape shape_a,
               TensorShape shape_b,
               TensorShape output_shape,
               bool        transpose_a,
               bool        transpose_b,
               DataType    data_type)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
            shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, ActivationLayerInfo(), 0, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithDynamicTensorsFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape         shape_a,
               TensorShape         shape_b,
               TensorShape         output_shape,
               bool                transpose_a,
               bool                transpose_b,
               DataType            data_type,
               ActivationLayerInfo act_info,
               int                 num_extra_runs)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
            shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class QuantizedMatMulValidationFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape         shape_a,
               TensorShape         shape_b,
               TensorShape         output_shape,
               bool                transpose_a,
               bool                transpose_b,
               DataType            data_type,
               ActivationLayerInfo act_info,
               int                 num_extra_runs,
               QuantizationInfo    a_qinfo,
               QuantizationInfo    b_qinfo,
               QuantizationInfo    o_qinfo)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
            shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
            a_qinfo, b_qinfo, o_qinfo);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithActivationFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape         shape_a,
               TensorShape         shape_b,
               TensorShape         output_shape,
               bool                transpose_a,
               bool                transpose_b,
               DataType            data_type,
               ActivationLayerInfo act_info)
    {
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
            shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class MatMulValidationWithActivationAlphaBetaFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape                             shape_a,
               TensorShape                             shape_b,
               TensorShape                             output_shape,
               bool                                    transpose_a,
               bool                                    transpose_b,
               DataType                                data_type,
               ActivationLayerInfo::ActivationFunction function,
               float                                   alpha_beta)
    {
        ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
            shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
class QuantizedMatMulValidationWithActivationFixture
    : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
{
public:
    void setup(TensorShape                             shape_a,
               TensorShape                             shape_b,
               TensorShape                             output_shape,
               bool                                    transpose_a,
               bool                                    transpose_b,
               DataType                                data_type,
               ActivationLayerInfo::ActivationFunction function,
               float                                   alpha_beta,
               int                                     num_extra_runs,
               QuantizationInfo                        a_qinfo,
               QuantizationInfo                        b_qinfo,
               QuantizationInfo                        o_qinfo)
    {
        ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
        MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
            shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
            a_qinfo, b_qinfo, o_qinfo);
    }
};

} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H