aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/FullyConnectedLayerFixture.h
blob: 7d767642f3e75e3ac12abb0878fd4922e49a10d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_TEST_FULLY_CONNECTED_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_FULLY_CONNECTED_LAYER_FIXTURE

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/RawTensor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/FullyConnectedLayer.h"
#include "tests/validation/reference/Utils.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedLayerValidationGenericFixture : public framework::Fixture
{
public:
    using TDecay = typename std::decay<T>::type;
    using TBias  = typename std::conditional < (std::is_same<TDecay, uint8_t>::value || std::is_same<TDecay, int8_t>::value), int32_t, T >::type;

public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights,
               DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo activation_info, bool mixed_layout = false)
    {
        ARM_COMPUTE_UNUSED(weights_shape);
        ARM_COMPUTE_UNUSED(bias_shape);

        _mixed_layout      = mixed_layout;
        _data_type         = data_type;
        _bias_data_type    = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
        _quantization_info = quantization_info;
        _activation_info   = activation_info;

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, transpose_weights, reshape_weights);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape);
    }

protected:
    void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
    {
        const DataLayout data_layout = src.info()->data_layout();
        // Test Multi DataLayout graph cases, when the data layout changes after configure
        src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);

        // Compute Convolution function
        layer.run();

        // Reinstating original data layout for the test suite to properly check the values
        src.info()->set_data_layout(data_layout);
        dst.info()->set_data_layout(data_layout);
    }

    template <typename U>
    void fill(U &&tensor, int i)
    {
        if(_data_type == DataType::QASYMM8)
        {
            std::uniform_int_distribution<uint8_t> distribution(0, 30);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::QASYMM8_SIGNED)
        {
            std::uniform_int_distribution<int8_t> distribution(-15, 15);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::S32)
        {
            std::uniform_int_distribution<int32_t> distribution(-50, 50);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::F16)
        {
            arm_compute::utils::uniform_real_distribution_16bit<half> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::F32)
        {
            std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else
        {
            library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, bool transpose_weights,
                              bool reshape_weights)
    {
        TensorShape reshaped_weights_shape(weights_shape);

        // Test actions depending on the target settings
        //
        //            | reshape   | !reshape
        // -----------+-----------+---------------------------
        //  transpose |           | ***
        // -----------+-----------+---------------------------
        // !transpose | transpose | transpose
        //            |           |
        //
        // ***: That combination is invalid. But we can ignore the transpose flag and handle all !reshape the same
        if(!reshape_weights || !transpose_weights)
        {
            const size_t shape_x = reshaped_weights_shape.x();
            reshaped_weights_shape.set(0, reshaped_weights_shape.y());
            reshaped_weights_shape.set(1, shape_x);
        }

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, _data_type, 1, _quantization_info);
        TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _data_type, 1, _quantization_info);
        TensorType bias    = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, _quantization_info);
        TensorType dst     = create_tensor<TensorType>(output_shape, _data_type, 1, _quantization_info);

        // Create Fully Connected layer info
        FullyConnectedLayerInfo fc_info;
        fc_info.transpose_weights    = transpose_weights;
        fc_info.are_weights_reshaped = !reshape_weights;
        fc_info.activation_info      = _activation_info;

        // Create and configure function.
        FunctionType fc;
        fc.configure(&src, &weights, &bias, &dst, fc_info);

        ARM_COMPUTE_ASSERT(src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        add_padding_x({ &src, &weights, &bias, &dst });

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // Fill tensors
        fill(AccessorType(src), 0);
        fill(AccessorType(bias), 2);

        if(!reshape_weights || !transpose_weights)
        {
            TensorShape tmp_shape(weights_shape);
            RawTensor   tmp(tmp_shape, _data_type, 1);

            // Fill with original shape
            fill(tmp, 1);

            // Transpose elementwise
            tmp = transpose(tmp);

            AccessorType weights_accessor(weights);

            for(int i = 0; i < tmp.num_elements(); ++i)
            {
                Coordinates coord = index2coord(tmp.shape(), i);
                std::copy_n(static_cast<const RawTensor::value_type *>(tmp(coord)),
                            tmp.element_size(),
                            static_cast<RawTensor::value_type *>(weights_accessor(coord)));
            }
        }
        else
        {
            fill(AccessorType(weights), 1);
        }

        if(_mixed_layout)
        {
            mix_layout(fc, src, dst);
        }
        else
        {
            // Compute NEFullyConnectedLayer function
            fc.run();
        }

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape)
    {
        // Create reference
        SimpleTensor<T>     src{ input_shape, _data_type, 1, _quantization_info };
        SimpleTensor<T>     weights{ weights_shape, _data_type, 1, _quantization_info };
        SimpleTensor<TBias> bias{ bias_shape, _bias_data_type, 1, _quantization_info };

        // Fill reference
        fill(src, 0);
        fill(weights, 1);
        fill(bias, 2);

        return reference::activation_layer(reference::fully_connected_layer<T>(src, weights, bias, output_shape), _activation_info, _quantization_info);
    }

    TensorType          _target{};
    SimpleTensor<T>     _reference{};
    DataType            _data_type{};
    DataType            _bias_data_type{};
    bool                _mixed_layout{ false };
    QuantizationInfo    _quantization_info{};
    ActivationLayerInfo _activation_info{};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class FullyConnectedLayerValidationFixture : public FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type,
               ActivationLayerInfo activation_info)
    {
        FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, transpose_weights,
                                                                                                      reshape_weights, data_type,
                                                                                                      QuantizationInfo(), activation_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class FullyConnectedLayerValidationQuantizedFixture : public FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type,
               QuantizationInfo quantization_info, ActivationLayerInfo activation_info)
    {
        FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, transpose_weights,
                                                                                                      reshape_weights, data_type,
                                                                                                      quantization_info, activation_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedWithDynamicWeightsFixture : public framework::Fixture
{
private:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        if(_data_type == DataType::F16)
        {
            arm_compute::utils::uniform_real_distribution_16bit<half> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::F32)
        {
            std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else
        {
            library->fill_tensor_uniform(tensor, i);
        }
    }

    void fill_transposed_weights(TensorType &weights, TensorShape weights_shape, int seed)
    {
        RawTensor tmp(weights_shape, _data_type, 1);

        // Fill with original shape
        fill(tmp, seed);

        // Transpose elementwise
        tmp = transpose(tmp);

        AccessorType weights_accessor(weights);

        for(int i = 0; i < tmp.num_elements(); ++i)
        {
            Coordinates coord = index2coord(tmp.shape(), i);
            std::copy_n(static_cast<const RawTensor::value_type *>(tmp(coord)),
                        tmp.element_size(),
                        static_cast<RawTensor::value_type *>(weights_accessor(coord)));
        }
    }

    void validate_with_tolerance(TensorType &target, SimpleTensor<T> &ref)
    {
        if(_data_type == DataType::F32)
        {
            constexpr RelativeTolerance<float> rel_tolerance_f32(0.05f);
            constexpr AbsoluteTolerance<float> abs_tolerance_f32(0.0001f);
            validate(AccessorType(target), ref, rel_tolerance_f32, 0, abs_tolerance_f32);
        }
        else
        {
            validate(AccessorType(target), ref);
        }
    }

public:
    template <typename...>
    void setup(TensorShape src_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape dst_shape,
               DataType data_type, ActivationLayerInfo activation_info)
    {
        _data_type = data_type;

        // Setup tensor meta-data
        TensorInfo src_info(src_shape, 1, data_type);
        _src.allocator()->init(src_info);

        TensorShape tr_weights_shape{ weights_shape[1], weights_shape[0] };
        TensorInfo  wei_info(tr_weights_shape, 1, data_type);
        _weights.allocator()->init(wei_info);

        TensorInfo bias_info(bias_shape, 1, data_type);
        _bias.allocator()->init(bias_info);

        TensorInfo dst_info(dst_shape, 1, data_type);
        _dst.allocator()->init(dst_info);

        // Configure FC layer and mark the weights as non constant
        FullyConnectedLayerInfo fc_info;
        fc_info.activation_info      = activation_info;
        fc_info.are_weights_reshaped = true;
        fc_info.transpose_weights    = false;
        fc_info.constant_weights     = false;
        FunctionType fc;
        fc.configure(&_src, &_weights, &_bias, &_dst, fc_info);

        // Allocate all the tensors
        _src.allocator()->allocate();
        _weights.allocator()->allocate();
        _bias.allocator()->allocate();
        _dst.allocator()->allocate();

        // Run multiple iterations with different inputs
        constexpr int num_iterations    = 5;
        int           randomizer_offset = 0;
        for(int i = 0; i < num_iterations; ++i)
        {
            // Run target
            {
                fill(AccessorType(_src), randomizer_offset);
                fill_transposed_weights(_weights, weights_shape, randomizer_offset + 1);
                fill(AccessorType(_bias), randomizer_offset + 2);

                fc.run();
            }

            // Run reference and compare
            {
                SimpleTensor<T> src{ src_shape, data_type };
                SimpleTensor<T> weights{ weights_shape, data_type };
                SimpleTensor<T> bias{ bias_shape, data_type };

                // Fill reference
                fill(src, randomizer_offset);
                fill(weights, randomizer_offset + 1);
                fill(bias, randomizer_offset + 2);

                auto dst = reference::activation_layer(reference::fully_connected_layer<T>(src, weights, bias, dst_shape), activation_info);

                // Validate
                validate_with_tolerance(_dst, dst);
            }

            randomizer_offset += 100;
        }
    }

private:
    TensorType _src{}, _weights{}, _bias{}, _dst{};
    DataType   _data_type{ DataType::UNKNOWN };
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_FULLY_CONNECTED_LAYER_FIXTURE */