aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/FullyConnectedLayerFixture.h
blob: 344187868f90b1ca387c7ed0ad10e108c22a16a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * Copyright (c) 2017-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_TESTS_VALIDATION_FIXTURES_FULLYCONNECTEDLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_FULLYCONNECTEDLAYERFIXTURE_H

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/RawTensor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/FullyConnectedLayer.h"
#include "tests/validation/reference/Utils.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedLayerValidationGenericFixture : public framework::Fixture
{
public:
    using TDecay = typename std::decay<T>::type;
    using TBias  = typename std::conditional < (std::is_same<TDecay, uint8_t>::value || std::is_same<TDecay, int8_t>::value), int32_t, T >::type;

public:
    void setup_quantization(TensorShape weights_shape, TensorShape output_shape, QuantizationInfo &input_q_info, QuantizationInfo &weights_q_info, DataType data_type)
    {
        _hash = weights_shape[0] + weights_shape[1] + output_shape[0] + output_shape[1];
        const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
        const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());

        std::mt19937                           generator(library->seed() + _hash);
        std::uniform_real_distribution<float>  distribution_float(-5.0f, 3.0f);
        std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);

        const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const int32_t offset_lhs = distribution_t(generator);
        const int32_t offset_rhs = distribution_t(generator);

        input_q_info = QuantizationInfo(scale_lhs, offset_lhs);
        weights_q_info = QuantizationInfo(scale_rhs, offset_rhs);


        const int k = weights_shape.x();
        QuantizationHint q_hint = suggest_mac_dst_q_info_and_bias(input_q_info, weights_q_info, k, data_type, 0.1f /* bias_fraction */, 4 /* number of standard deviations*/);

        _dst_q_info = q_hint.q_info;
        _min_bias = q_hint.bias_min;
        _max_bias = q_hint.bias_max;

        // Do not change here as these limits are the natural limits of the associated data types and
        // are embedded in the computation of the dst quantization info.
        _min_u8 = 0;
        _max_u8 = 255;
        _min_s8 = -128;
        _max_s8 = 127;
    }

    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights,
               DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo activation_info, bool mixed_layout = false)
    {
        ARM_COMPUTE_UNUSED(weights_shape);
        ARM_COMPUTE_UNUSED(bias_shape);

        _mixed_layout      = mixed_layout;
        _data_type         = data_type;
        _bias_data_type    = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;

        // Note : Quantization Info parameter from setup function is only used when quant datatype and activation function is not enabled or is identity.
        if(is_data_type_quantized(data_type) && (!activation_info.enabled() || activation_info.activation() == ActivationFunction::IDENTITY))
        {
            // Initialises quantization info with appropriate scale and offset for given input shapes.
            setup_quantization(weights_shape, output_shape,_input_q_info, _weight_q_info, data_type);
        }
        else
        {
            _input_q_info = quantization_info;
            _weight_q_info = quantization_info;
            _dst_q_info = quantization_info;
        }

        _activation_info   = activation_info;

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, transpose_weights, reshape_weights);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape);
    }

protected:
    void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
    {
        const DataLayout data_layout = src.info()->data_layout();
        // Test Multi DataLayout graph cases, when the data layout changes after configure
        src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);

        // Compute Convolution function
        layer.run();

        // Reinstating original data layout for the test suite to properly check the values
        src.info()->set_data_layout(data_layout);
        dst.info()->set_data_layout(data_layout);
    }

    template <typename U>
    void fill(U &&tensor, int i)
    {
        if(_data_type == DataType::QASYMM8)
        {
            std::uniform_int_distribution<uint32_t> distribution(_min_u8, _max_u8);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::QASYMM8_SIGNED)
        {
            std::uniform_int_distribution<int32_t> distribution(_min_s8, _max_s8);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::S32)
        {
            std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::F16)
        {
            arm_compute::utils::uniform_real_distribution_16bit<half> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::F32)
        {
            std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else
        {
            library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, bool transpose_weights,
                              bool reshape_weights)
    {
        TensorShape reshaped_weights_shape(weights_shape);

        // Test actions depending on the target settings
        //
        //            | reshape   | !reshape
        // -----------+-----------+---------------------------
        //  transpose |           | ***
        // -----------+-----------+---------------------------
        // !transpose | transpose | transpose
        //            |           |
        //
        // ***: That combination is invalid. But we can ignore the transpose flag and handle all !reshape the same
        if(!reshape_weights || !transpose_weights)
        {
            const size_t shape_x = reshaped_weights_shape.x();
            reshaped_weights_shape.set(0, reshaped_weights_shape.y());
            reshaped_weights_shape.set(1, shape_x);
        }

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, _data_type, 1, _input_q_info);
        TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _data_type, 1, _weight_q_info);
        TensorType bias    = create_tensor<TensorType>(bias_shape, _bias_data_type, 1);
        TensorType dst     = create_tensor<TensorType>(output_shape, _data_type, 1, _dst_q_info);

        // Create Fully Connected layer info
        FullyConnectedLayerInfo fc_info;
        fc_info.transpose_weights    = transpose_weights;
        fc_info.are_weights_reshaped = !reshape_weights;
        fc_info.activation_info      = _activation_info;

        // Create and configure function.
        FunctionType fc;
        fc.configure(&src, &weights, &bias, &dst, fc_info);

        ARM_COMPUTE_ASSERT(src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        add_padding_x({ &src, &weights, &bias, &dst });

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // Fill tensors
        fill(AccessorType(src), 0 + _hash);
        fill(AccessorType(bias), 2 + _hash);

        if(!reshape_weights || !transpose_weights)
        {
            TensorShape tmp_shape(weights_shape);
            RawTensor   tmp(tmp_shape, _data_type, 1);

            // Fill with original shape
            fill(tmp, 1 + _hash);

            // Transpose elementwise
            tmp = transpose(tmp);

            AccessorType weights_accessor(weights);

            for(int i = 0; i < tmp.num_elements(); ++i)
            {
                Coordinates coord = index2coord(tmp.shape(), i);
                std::copy_n(static_cast<const RawTensor::value_type *>(tmp(coord)),
                            tmp.element_size(),
                            static_cast<RawTensor::value_type *>(weights_accessor(coord)));
            }
        }
        else
        {
            fill(AccessorType(weights), 1 + _hash);
        }

        if(_mixed_layout)
        {
            mix_layout(fc, src, dst);
        }
        else
        {
            // Compute NEFullyConnectedLayer function
            fc.run();
        }

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape)
    {
        // Create reference
        SimpleTensor<T>     src{ input_shape, _data_type, 1, _input_q_info };
        SimpleTensor<T>     weights{ weights_shape, _data_type, 1, _weight_q_info };
        SimpleTensor<TBias> bias{ bias_shape, _bias_data_type, 1, QuantizationInfo() };

        // Fill reference
        fill(src, 0 + _hash);
        fill(weights, 1 + _hash);
        fill(bias, 2 + _hash);

        return reference::activation_layer(reference::fully_connected_layer<T>(src, weights, bias, output_shape, _dst_q_info), _activation_info, _dst_q_info);
    }

    TensorType          _target{};
    SimpleTensor<T>     _reference{};
    DataType            _data_type{};
    DataType            _bias_data_type{};
    bool                _mixed_layout{ false };
    QuantizationInfo    _input_q_info{};
    QuantizationInfo    _weight_q_info{};
    QuantizationInfo    _dst_q_info{};
    ActivationLayerInfo _activation_info{};

    // Random initialization limits
    // Default values are previously handcrafted limits
    // that sould be used when we don't use dynamic quantization
    int32_t _min_bias{-50};
    int32_t _max_bias{50};

    int32_t _min_u8{0};
    int32_t _max_u8{30};
    int32_t _min_s8{-15};
    int32_t _max_s8{15};
    int    _hash{0};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class FullyConnectedLayerValidationFixture : public FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type,
               ActivationLayerInfo activation_info)
    {
        FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, transpose_weights,
                                                                                                      reshape_weights, data_type,
                                                                                                      QuantizationInfo(), activation_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class FullyConnectedLayerValidationQuantizedFixture : public FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, bool transpose_weights, bool reshape_weights, DataType data_type,
               QuantizationInfo quantization_info, ActivationLayerInfo activation_info)
    {
        FullyConnectedLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, transpose_weights,
                                                                                                      reshape_weights, data_type,
                                                                                                      quantization_info, activation_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedWithDynamicTensorsFixture : public framework::Fixture
{
private:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        if(_data_type == DataType::F16)
        {
            arm_compute::utils::uniform_real_distribution_16bit<half> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::F32)
        {
            std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::QASYMM8)
        {
            std::uniform_int_distribution<uint32_t> distribution(_min_u8, _max_u8);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::QASYMM8_SIGNED)
        {
            std::uniform_int_distribution<int32_t> distribution(_min_s8, _max_s8);
            library->fill(tensor, distribution, i);
        }
        else if(_data_type == DataType::S32)
        {
            std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
            library->fill(tensor, distribution, i);
        }
        else
        {
            library->fill_tensor_uniform(tensor, i);
        }
    }

    void fill_transposed_weights(TensorType &weights, TensorShape weights_shape, int seed)
    {
        RawTensor tmp(weights_shape, _data_type, 1);

        // Fill with original shape
        fill(tmp, seed);

        // Transpose elementwise
        tmp = transpose(tmp);

        AccessorType weights_accessor(weights);

        for(int i = 0; i < tmp.num_elements(); ++i)
        {
            Coordinates coord = index2coord(tmp.shape(), i);
            std::copy_n(static_cast<const RawTensor::value_type *>(tmp(coord)),
                        tmp.element_size(),
                        static_cast<RawTensor::value_type *>(weights_accessor(coord)));
        }
    }

    void validate_with_tolerance(TensorType &target, SimpleTensor<float> &ref)
    {
        constexpr RelativeTolerance<float> rel_tolerance_f32(0.01f);
        constexpr AbsoluteTolerance<float> abs_tolerance_f32(0.001f);
        validate(AccessorType(target), ref, rel_tolerance_f32, 0, abs_tolerance_f32);
    }

    void validate_with_tolerance(TensorType &target, SimpleTensor<half_float::half> &ref)
    {
        constexpr AbsoluteTolerance<float>        abs_tolerance_f16(0.3f);
        const RelativeTolerance<half_float::half> rel_tolerance_f16(half_float::half(0.2f));
        constexpr float                           tolerance_num_f16 = 0.07f;

        validate(AccessorType(target), ref, rel_tolerance_f16, tolerance_num_f16, abs_tolerance_f16);
    }

    void validate_with_tolerance(TensorType &target, SimpleTensor<uint8_t> &ref)
    {
        constexpr AbsoluteTolerance<uint32_t> tolerance_qasymm8(1);
        validate(AccessorType(target), ref, tolerance_qasymm8);
    }

    void validate_with_tolerance(TensorType &target, SimpleTensor<int8_t> &ref)
    {
        constexpr AbsoluteTolerance<int32_t> tolerance_qasymm8_signed(1);
        validate(AccessorType(target), ref, tolerance_qasymm8_signed);
    }

    void setup_quantization(TensorShape weights_shape, TensorShape output_shape, QuantizationInfo &input_q_info, QuantizationInfo &weights_q_info, DataType data_type)
    {
        _hash = weights_shape[0] + weights_shape[1] + output_shape[0] + output_shape[1];

        const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
        const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());

        std::mt19937                           generator(library->seed() + _hash);
        std::uniform_real_distribution<float>  distribution_float(-5.0f, 3.0f);
        std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);

        const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const int32_t offset_lhs = distribution_t(generator);
        const int32_t offset_rhs = distribution_t(generator);

        input_q_info = QuantizationInfo(scale_lhs, offset_lhs);
        weights_q_info = QuantizationInfo(scale_rhs, offset_rhs);

        const int k = weights_shape.x();
        QuantizationHint q_hint = suggest_mac_dst_q_info_and_bias(input_q_info, weights_q_info, k, data_type, 0.1f /* bias_fraction */, 4 /* number of standard deviations*/);

        _dst_q_info = q_hint.q_info;
        _min_bias = q_hint.bias_min;
        _max_bias = q_hint.bias_max;

        // Do not change here as these limits are the natural limits of the associated data types and
        // are embedded in the computation of the dst quantization info.
        _min_u8 = 0;
        _max_u8 = 255;
        _min_s8 = -128;
        _max_s8 = 127;
    }

public:
    using TDecay = typename std::decay<T>::type;
    using TBias  = typename std::conditional < (std::is_same<TDecay, uint8_t>::value || std::is_same<TDecay, int8_t>::value), int32_t, T >::type;

    void setup(TensorShape src_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape dst_shape,
               DataType data_type, ActivationLayerInfo activation_info, bool constant_weights, bool constant_bias, bool weights_reshaped, bool remove_bias = false)
    {
        _data_type = data_type;

        const bool     is_quantized   = is_data_type_quantized(data_type);
        const DataType bias_data_type = (is_quantized) ? DataType::S32 : data_type;

        if (is_quantized && (!activation_info.enabled() || activation_info.activation() == ActivationFunction::IDENTITY))
        {
            setup_quantization(weights_shape, dst_shape, _src_q_info, _weights_q_info, data_type);
        }
        else
        {
            _src_q_info = QuantizationInfo(0.1f, 10);
            _dst_q_info = QuantizationInfo(0.3f, 20);
            _weights_q_info = QuantizationInfo(0.2f, 5);
        }

        // Configure TensorInfo Objects
        const TensorInfo src_info(src_shape, 1, data_type, _src_q_info);
        const TensorInfo dst_info(dst_shape, 1, data_type, _dst_q_info);
        TensorInfo       bias_info(bias_shape, 1, bias_data_type);
        TensorInfo       wei_info(weights_shape, 1, data_type, _weights_q_info);

        if(!constant_weights && weights_reshaped)
        {
            const TensorShape tr_weights_shape{ weights_shape[1], weights_shape[0] };
            wei_info.set_tensor_shape(tr_weights_shape);
        }
        wei_info.set_are_values_constant(constant_weights);
        bias_info.set_are_values_constant(constant_bias);

        // Initialise Tensors
        _src.allocator()->init(src_info);
        _weights.allocator()->init(wei_info);
        if(!remove_bias)
            _bias.allocator()->init(bias_info);
        _dst.allocator()->init(dst_info);

        // Configure FC layer and mark the weights as non constant
        FullyConnectedLayerInfo fc_info;
        fc_info.activation_info = activation_info;
        if(!constant_weights)
        {
            fc_info.are_weights_reshaped = weights_reshaped;
            fc_info.transpose_weights    = !weights_reshaped;
        }
        FunctionType fc;
        fc.configure(&_src, &_weights, (remove_bias) ? nullptr : &_bias, &_dst, fc_info);

        // Allocate all the tensors
        _src.allocator()->allocate();
        _weights.allocator()->allocate();
        if(!remove_bias)
            _bias.allocator()->allocate();
        _dst.allocator()->allocate();

        // Run multiple iterations with different inputs
        constexpr int num_iterations    = 5;
        int           randomizer_offset = 0;

        // Create reference tensors
        SimpleTensor<T>     src{ src_shape, data_type, 1, _src_q_info };
        SimpleTensor<T>     weights{ weights_shape, data_type, 1, _weights_q_info };
        SimpleTensor<TBias> bias{ bias_shape, bias_data_type };

        // Fill weights and/or bias if they remain constant
        if(constant_weights)
        {
            fill(AccessorType(_weights), 1 + _hash);
            fill(weights, 1 + _hash);
        }
        if(constant_bias && !remove_bias)
        {
            fill(AccessorType(_bias), 2 + _hash);
            fill(bias, 2 + _hash);
        }
        // To remove bias, fill with 0
        if(remove_bias && is_quantized)
        {
            library->fill_tensor_value(bias, 0);
        }
        else if(remove_bias)
        {
            library->fill_tensor_value(bias, (float)0.0);
        }

        for(int i = 0; i < num_iterations; ++i)
        {
            // Run target
            {
                fill(AccessorType(_src), randomizer_offset);
                if(!constant_weights)
                {
                    if(weights_reshaped)
                    {
                        fill_transposed_weights(_weights, weights_shape, randomizer_offset + 1 + _hash);
                    }
                    else
                    {
                        fill(AccessorType(_weights), randomizer_offset + 1 +_hash);
                    }
                }
                if(!constant_bias && !remove_bias)
                {
                    fill(AccessorType(_bias), randomizer_offset + 2 + _hash);
                }

                fc.run();
            }

            // Run reference and compare
            {
                // Fill reference
                fill(src, randomizer_offset);
                if(!constant_weights)
                {
                    fill(weights, randomizer_offset + 1 + _hash);
                }
                if(!constant_bias && !remove_bias)
                {
                    fill(bias, randomizer_offset + 2 + _hash);
                }

                auto dst = reference::activation_layer(reference::fully_connected_layer<T>(src, weights, bias, dst_shape, _dst_q_info), activation_info, _dst_q_info);

                // Validate
                validate_with_tolerance(_dst, dst);
            }

            randomizer_offset += 100;
        }
    }

private:
    TensorType _src{}, _weights{}, _bias{}, _dst{};
    DataType   _data_type{ DataType::UNKNOWN };

    QuantizationInfo _src_q_info{};
    QuantizationInfo _weights_q_info{};
    QuantizationInfo _dst_q_info{};

    // Random initialization limits
    // Default values are previously handcrafted limits
    // that sould be used when we don't use dynamic quantization
    int32_t _min_bias{-50};
    int32_t _max_bias{50};

    int32_t _min_u8{0};
    int32_t _max_u8{30};
    int32_t _min_s8{-15};
    int32_t _max_s8{15};
    int     _hash{0};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedWithDynamicWeightsFixture : public FullyConnectedWithDynamicTensorsFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape src_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape dst_shape,
               DataType data_type, ActivationLayerInfo activation_info, bool weights_reshaped)
    {
        FullyConnectedWithDynamicTensorsFixture<TensorType, AccessorType, FunctionType, T>::setup(src_shape, weights_shape, bias_shape,
                                                                                                  dst_shape, data_type, activation_info, false, true, weights_reshaped, false);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedDynamicNoBiasFixture : public FullyConnectedWithDynamicTensorsFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape src_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape dst_shape,
               DataType data_type, ActivationLayerInfo activation_info, bool weights_reshaped)
    {
        FullyConnectedWithDynamicTensorsFixture<TensorType, AccessorType, FunctionType, T>::setup(src_shape, weights_shape, bias_shape,
                                                                                                  dst_shape, data_type, activation_info, false, true, weights_reshaped, true);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class FullyConnectedWithDynamicBiasFixture : public FullyConnectedWithDynamicTensorsFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    void setup(TensorShape src_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape dst_shape,
               DataType data_type, ActivationLayerInfo activation_info)
    {
        FullyConnectedWithDynamicTensorsFixture<TensorType, AccessorType, FunctionType, T>::setup(src_shape, weights_shape, bias_shape,
                                                                                                  dst_shape, data_type, activation_info, true, false, false, false);
    }
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_FULLYCONNECTEDLAYERFIXTURE_H