aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/ConvolutionLayerFixture.h
blob: bffdc59758720e13473682cfdfb94bf922d00393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 * Copyright (c) 2017-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/graph/mutators/MutatorUtils.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/PadLayer.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/Utils.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace detail
{
template <typename ConvolutionFunction, typename TensorType>
void configure_conv_function(ConvolutionFunction &func,
                             TensorType *src, const TensorType *weights, const TensorType *bias, TensorType *dst,
                             const PadStrideInfo &info, const WeightsInfo &weights_info,
                             const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
    func.configure(src, weights, bias, dst, info, weights_info, dilation, act_info, num_groups);
}
} // namespace detail

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationGenericFixture : public framework::Fixture
{
public:
    using TBias = typename std::conditional < std::is_same<typename std::decay<T>::type, uint8_t>::value
                  || std::is_same<typename std::decay<T>::type, int8_t>::value,
                  int32_t, T >::type;

public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights,
               DataType data_type, DataType weights_data_type, DataLayout data_layout, QuantizationInfo quantization_info, QuantizationInfo weight_quantization_info, ActivationLayerInfo act_info,
               bool mixed_layout = false, PaddingList pre_pad_layer = PaddingList({}))
    {
        _mixed_layout             = mixed_layout;
        _data_type                = data_type;
        _weights_data_type        = weights_data_type;
        _is_quantized             = is_data_type_quantized_asymmetric(data_type);
        _is_bfloat16              = data_type == DataType::BFLOAT16;
        _bias_data_type           = _is_quantized ? DataType::S32 : (_is_bfloat16 ? DataType::F32 : data_type);
        _output_data_type         = _is_bfloat16 ? DataType::F32 : data_type;
        _quantization_info        = quantization_info;
        _weight_quantization_info = weight_quantization_info;
        _data_layout              = data_layout;

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, dilation, act_info, pre_pad_layer);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation, act_info, pre_pad_layer);
    }

protected:
    void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
    {
        // Test Multi DataLayout graph cases, when the data layout changes after configure
        src.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        dst.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);

        // Compute Convolution function
        layer.run();

        // Reinstating original data layout for the test suite to properly check the values
        src.info()->set_data_layout(_data_layout);
        dst.info()->set_data_layout(_data_layout);
    }

    void regularize_values(void *values, size_t size)
    {
        float *fvalues = static_cast<float *>(values);
        for(size_t i = 0; i < size; ++i)
        {
            fvalues[i] = float(bfloat16(fvalues[i]));
        }
    }

    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::QASYMM8:
            {
                std::pair<int, int> bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                std::uniform_int_distribution<uint32_t> distribution(bounds.first, bounds.second);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::QASYMM8_SIGNED:
            {
                std::pair<int, int> bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                std::uniform_int_distribution<int32_t> distribution(bounds.first, bounds.second);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::QSYMM8_PER_CHANNEL:
            {
                int min_bound = 128;
                int max_bound = -127;
                for(size_t i = 0; i < _weight_quantization_info.scale().size(); i++)
                {
                    std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
                    if(bounds.first < min_bound)
                    {
                        min_bound = bounds.first;
                    }
                    if(bounds.second > max_bound)
                    {
                        max_bound = bounds.second;
                    }
                }
                std::uniform_int_distribution<int32_t> distribution(min_bound, max_bound);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::S32:
            {
                std::uniform_int_distribution<int32_t> distribution(-100, 100);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::BFLOAT16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    // given input is IN nchw format
    TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
                              bool reshape_weights, const Size2D &dilation, const ActivationLayerInfo act_info, PaddingList pre_pad_layer = PaddingList({}))
    {
        ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);

        const unsigned int num_groups = input_shape[2] / weights_shape[2];

        if(_data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
            permute(output_shape, PermutationVector(2U, 0U, 1U));

            if(pre_pad_layer.size() > 0)
            {
                // make sure paddings exist for each c,h,w dimensions
                for(unsigned int i = 0; i < 3 - pre_pad_layer.size(); ++i)
                {
                    pre_pad_layer.push_back({ 0, 0 });
                }

                // rotate padding info from nchw to nhwc
                std::rotate(pre_pad_layer.begin(), pre_pad_layer.begin() + 2, pre_pad_layer.begin() + 3);
            }
        }

        const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
        const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

        WeightsInfo weights_info(!reshape_weights, weights_shape[idx_width], weights_shape[idx_height], weights_shape[3]);
        TensorShape reshaped_weights_shape(weights_shape);

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, _data_type, 1, _quantization_info, _data_layout);
        TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _weights_data_type, 1, _weight_quantization_info, _data_layout);
        TensorType bias    = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, _quantization_info, _data_layout);
        TensorType dst     = create_tensor<TensorType>(output_shape, _output_data_type, 1, _quantization_info, _data_layout);

        // Create and configure function
        FunctionType conv;

        const unsigned int height_index = arm_compute::graph::get_dimension_idx(_data_layout, DataLayoutDimension::HEIGHT);
        const unsigned int width_index  = arm_compute::graph::get_dimension_idx(_data_layout, DataLayoutDimension::WIDTH);

        const PaddingInfo pad_w = width_index < pre_pad_layer.size() ? pre_pad_layer[width_index] : PaddingInfo(0, 0);
        const PaddingInfo pad_h = height_index < pre_pad_layer.size() ? pre_pad_layer[height_index] : PaddingInfo(0, 0);

        if(pre_pad_layer.size() > 0 && arm_compute::graph::is_padding_in_height_or_width(_data_layout, pre_pad_layer))
        {
            // this is the logic implemented in NodeFusionMutator -> fuse_pad_with_convolution
            const PadStrideInfo new_conv_info(
                info.stride().first,
                info.stride().second,
                info.pad_left() + pad_w.first,
                info.pad_right() + pad_w.second,
                info.pad_top() + pad_h.first,
                info.pad_bottom() + pad_h.second,
                info.round());
            detail::configure_conv_function(conv, &src, &weights, &bias, &dst, new_conv_info, weights_info, dilation, act_info, num_groups);
        }
        else
        {
            detail::configure_conv_function(conv, &src, &weights, &bias, &dst, info, weights_info, dilation, act_info, num_groups);
        }

        ARM_COMPUTE_ASSERT(src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());

        add_padding_x({ &src, &weights, &bias, &dst }, _data_layout);

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // Fill tensors
        fill(AccessorType(src), 0);
        fill(AccessorType(weights), 1);
        fill(AccessorType(bias), 2);

        if(_mixed_layout)
        {
            mix_layout(conv, src, dst);
        }
        else
        {
            // Compute Convolution function
            conv.run();
        }

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                                      const Size2D &dilation, const ActivationLayerInfo act_info, PaddingList pre_pad_layer = PaddingList({}))
    {
        ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);

        const unsigned int num_groups = input_shape[2] / weights_shape[2];

        // Setup reference data types
        const DataType src_dt     = _is_bfloat16 ? DataType::F32 : _data_type;
        const DataType weights_dt = _is_bfloat16 ? DataType::F32 : _weights_data_type;
        const DataType bias_dt    = _is_bfloat16 ? DataType::F32 : _bias_data_type;

        // Create reference
        SimpleTensor<T>     src{ input_shape, src_dt, 1, _quantization_info };
        SimpleTensor<TW>    weights{ weights_shape, weights_dt, 1, _weight_quantization_info };
        SimpleTensor<TBias> bias{ bias_shape, bias_dt, 1, _quantization_info };

        fill(src, 0);
        fill(weights, 1);
        fill(bias, 2);

        // Fill with bfloat16 to perform the conversion and reduce the mismatches in the output
        if(_is_bfloat16)
        {
            regularize_values(static_cast<void *>(src.data()), src.num_elements());
            regularize_values(static_cast<void *>(weights.data()), weights.num_elements());
        }

        if(pre_pad_layer.size() > 0)
        {
            src = reference::pad_layer<T>(src, pre_pad_layer, PixelValue(0), PaddingMode::CONSTANT);
        }

        return (act_info.enabled()) ? reference::activation_layer<T>(reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups),
                                                                     act_info) :
               reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups);
    }

    TensorType       _target{};
    SimpleTensor<T>  _reference{};
    DataType         _data_type{};
    DataType         _weights_data_type{};
    DataType         _bias_data_type{};
    DataType         _output_data_type{};
    DataLayout       _data_layout{};
    QuantizationInfo _quantization_info{};
    QuantizationInfo _weight_quantization_info{};
    bool             _is_quantized = false;
    bool             _is_bfloat16  = false;
    bool             _mixed_layout = false;
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, ActivationLayerInfo act_info)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout,
                                                                                                 QuantizationInfo(), QuantizationInfo(), act_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationWithPaddingFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, ActivationLayerInfo act_info, PaddingList pre_pad_layer = PaddingList({}))
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout,
                                                                                                 QuantizationInfo(), QuantizationInfo(), act_info, mixed_layout, pre_pad_layer);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationQuantizedFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout, quantization_info, quantization_info, act_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationQuantizedPerChannelFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataType weights_data_type)
    {
        std::vector<float>                    weights_scales{};
        std::mt19937                          gen(library->seed());
        std::uniform_real_distribution<float> dis(0.01f, 1.f);
        for(size_t i = 0; i < output_shape[2]; ++i)
        {
            weights_scales.push_back(dis(gen));
        }
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation,
                                                                                                  reshape_weights, data_type, weights_data_type, data_layout,
                                                                                                  quantization_info, QuantizationInfo(weights_scales), act_info);
    }
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */