aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/ConvolutionLayerFixture.h
blob: dd2df727e9f237659105732a6c28dc4bd59d5749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/CPP/ConvolutionLayer.h"
#include "tests/validation/CPP/Utils.h"
#include "tests/validation/Helpers.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixedPointFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, bool reshape_weights, DataType data_type, int fractional_bits)
    {
        _fractional_bits = fractional_bits;
        _data_type       = data_type;

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, data_type, fractional_bits);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, fractional_bits);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::F16:
            case DataType::F32:
            {
                std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                              bool reshape_weights, DataType data_type, int fixed_point_position)
    {
        WeightsInfo weights_info(!reshape_weights, weights_shape.x(), weights_shape.y(), weights_shape[3]);
        TensorShape reshaped_weights_shape(weights_shape);

        if(!reshape_weights)
        {
            // Check if its a "fully connected" convolution
            const bool is_fully_connected_convolution = (output_shape.x() == 1 && output_shape.y() == 1);
            reshaped_weights_shape.collapse(3);

            if(bias_shape.total_size() > 0)
            {
                reshaped_weights_shape.set(0, reshaped_weights_shape.x() + 1);
            }

            if(is_fully_connected_convolution)
            {
                const size_t shape_x = reshaped_weights_shape.x();
                reshaped_weights_shape.set(0, reshaped_weights_shape.y());
                reshaped_weights_shape.set(1, shape_x);
            }
            else
            {
                const int interleave_width = 16 / data_size_from_type(data_type);
                reshaped_weights_shape.set(0, reshaped_weights_shape.x() * interleave_width);
                reshaped_weights_shape.set(1, static_cast<unsigned int>(std::ceil(reshaped_weights_shape.y() / static_cast<float>(interleave_width))));
            }
        }

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, fixed_point_position);
        TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, data_type, 1, fixed_point_position);
        TensorType bias    = create_tensor<TensorType>(bias_shape, data_type, 1, fixed_point_position);
        TensorType dst     = create_tensor<TensorType>(output_shape, data_type, 1, fixed_point_position);

        // Create and configure function
        FunctionType conv;
        conv.configure(&src, &weights, &bias, &dst, info, weights_info);

        ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Fill tensors
        fill(AccessorType(src), 0);

        if(!reshape_weights)
        {
            const bool is_fully_connected_convolution = (output_shape.x() == 1 && output_shape.y() == 1);

            TensorShape     tmp_weights_shape(weights_shape);
            SimpleTensor<T> tmp_weights(tmp_weights_shape, data_type, 1, fixed_point_position);
            SimpleTensor<T> tmp_bias(bias_shape, data_type, 1, fixed_point_position);

            // Fill with original shape
            fill(tmp_weights, 1);
            fill(tmp_bias, 2);

            tmp_weights = linearise_weights(tmp_weights, &tmp_bias);

            if(!is_fully_connected_convolution)
            {
                // Transpose with interleave
                const int interleave_size = 16 / tmp_weights.element_size();
                tmp_weights               = transpose(std::move(tmp_weights), interleave_size);
            }

            AccessorType weights_accessor(weights);

            for(int i = 0; i < tmp_weights.num_elements(); ++i)
            {
                Coordinates coord = index2coord(tmp_weights.shape(), i);
                std::copy_n(static_cast<const T *>(tmp_weights(coord)), 1, static_cast<T *>(weights_accessor(coord)));
            }
        }
        else
        {
            fill(AccessorType(weights), 1);
            fill(AccessorType(bias), 2);
        }

        // Compute NEConvolutionLayer function
        conv.run();

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                                      DataType data_type, int fixed_point_position)
    {
        // Create reference
        SimpleTensor<T> src{ input_shape, data_type, 1, fixed_point_position };
        SimpleTensor<T> weights{ weights_shape, data_type, 1, fixed_point_position };
        SimpleTensor<T> bias{ bias_shape, data_type, 1, fixed_point_position };

        // Fill reference
        fill(src, 0);
        fill(weights, 1);
        fill(bias, 2);

        return reference::convolution_layer<T>(src, weights, bias, output_shape, info);
    }

    TensorType      _target{};
    SimpleTensor<T> _reference{};
    int             _fractional_bits{};
    DataType        _data_type{};

private:
    template <typename U>
    SimpleTensor<U> linearise_weights(const SimpleTensor<U> &weights, const SimpleTensor<U> *biases = nullptr)
    {
        TensorShape dst_shape(weights.shape());
        dst_shape.collapse(3);

        if(biases != nullptr)
        {
            dst_shape.set(0, dst_shape.x() + 1);
        }

        const size_t shape_x = dst_shape.x();
        dst_shape.set(0, dst_shape.y());
        dst_shape.set(1, shape_x);

        SimpleTensor<U> dst(dst_shape, weights.data_type());

        // Don't iterate over biases yet
        for(int weights_idx = 0; weights_idx < weights.num_elements(); ++weights_idx)
        {
            Coordinates weights_coord = index2coord(weights.shape(), weights_idx);
            const int   dst_row       = weights_idx % weights.shape().total_size_lower(3);
            Coordinates dst_coord{ weights_coord[3], dst_row, weights_coord[4] };
            const int   dst_idx = coord2index(dst.shape(), dst_coord);

            dst[dst_idx] = weights[weights_idx];
        }

        if(biases != nullptr)
        {
            // Fill last row with biases
            for(int bias_idx = 0; bias_idx < biases->num_elements(); ++bias_idx)
            {
                Coordinates bias_coord = index2coord(biases->shape(), bias_idx);
                Coordinates dst_coord{ bias_coord.x(), static_cast<int>(dst.shape().y()) - 1, bias_coord.y() };
                int         dst_idx = coord2index(dst.shape(), dst_coord);

                dst[dst_idx] = (*biases)[bias_idx];
            }
        }

        return dst;
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixture : public ConvolutionValidationFixedPointFixture<TensorType, AccessorType, FunctionType, T>
{
public:
    template <typename...>
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, bool reshape_weights, DataType data_type)
    {
        ConvolutionValidationFixedPointFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, data_type, 0);
    }
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */